Abstract:Unlike opaque object, novel view synthesis of transparent object is a challenging task, because transparent object refracts light of background causing visual distortions on the transparent object surface along the viewpoint change. Recently introduced Neural Radiance Fields (NeRF) is a view synthesis method. Thanks to its remarkable performance improvement, lots of following applications based on NeRF in various topics have been developed. However, if an object with a different refractive index is included in a scene such as transparent object, NeRF shows limited performance because refracted light ray at the surface of the transparent object is not appropriately considered. To resolve the problem, we propose a NeRF-based method consisting of the following three steps: First, we reconstruct a three-dimensional shape of a transparent object using visual hull. Second, we simulate the refraction of the rays inside of the transparent object according to Snell's law. Last, we sample points through refracted rays and put them into NeRF. Experimental evaluation results demonstrate that our method addresses the limitation of conventional NeRF with transparent objects.
Abstract:Single Image Reflection Removal (SIRR) in real-world images is a challenging task due to diverse image degradations occurring on the glass surface during light transmission and reflection. Many existing methods rely on specific prior assumptions to resolve the problem. In this paper, we propose a general reflection intensity prior that captures the intensity of the reflection phenomenon and demonstrate its effectiveness. To learn the reflection intensity prior, we introduce the Reflection Prior Extraction Network (RPEN). By segmenting images into regional patches, RPEN learns non-uniform reflection prior in an image. We propose Prior-based Reflection Removal Network (PRRN) using a simple transformer U-Net architecture that adapts reflection prior fed from RPEN. Experimental results on real-world benchmarks demonstrate the effectiveness of our approach achieving state-of-the-art accuracy in SIRR.