Abstract:Detecting protein-protein interactions (PPIs) is crucial for understanding genetic mechanisms, disease pathogenesis, and drug design. However, with the fast-paced growth of biomedical literature, there is a growing need for automated and accurate extraction of PPIs to facilitate scientific knowledge discovery. Pre-trained language models, such as generative pre-trained transformer (GPT) and bidirectional encoder representations from transformers (BERT), have shown promising results in natural language processing (NLP) tasks. We evaluated the PPI identification performance of various GPT and BERT models using a manually curated benchmark corpus of 164 PPIs in 77 sentences from learning language in logic (LLL). BERT-based models achieved the best overall performance, with PubMedBERT achieving the highest precision (85.17%) and F1-score (86.47%) and BioM-ALBERT achieving the highest recall (93.83%). Despite not being explicitly trained for biomedical texts, GPT-4 achieved comparable performance to the best BERT models with 83.34% precision, 76.57% recall, and 79.18% F1-score. These findings suggest that GPT models can effectively detect PPIs from text data and have the potential for use in biomedical literature mining tasks.
Abstract:Agriculture plays an important role in the food and economy of Bangladesh. The rapid growth of population over the years also has increased the demand for food production. One of the major reasons behind low crop production is numerous bacteria, virus and fungal plant diseases. Early detection of plant diseases and proper usage of pesticides and fertilizers are vital for preventing the diseases and boost the yield. Most of the farmers use generalized pesticides and fertilizers in the entire fields without specifically knowing the condition of the plants. Thus the production cost oftentimes increases, and, not only that, sometimes this becomes detrimental to the yield. Deep Learning models are found to be very effective to automatically detect plant diseases from images of plants, thereby reducing the need for human specialists. This paper aims at building a lightweight deep learning model for predicting leaf disease in tomato plants. By modifying the region-based convolutional neural network, we design an efficient and effective model that demonstrates satisfactory empirical performance on a benchmark dataset. Our proposed model can easily be deployed in a larger system where drones take images of leaves and these images will be fed into our model to know the health condition.