Abstract:Classifying scientific publications according to Field-of-Science (FoS) taxonomies is of crucial importance, allowing funders, publishers, scholars, companies and other stakeholders to organize scientific literature more effectively. Most existing works address classification either at venue level or solely based on the textual content of a research publication. We present SciNoBo, a novel classification system of publications to predefined FoS taxonomies, leveraging the structural properties of a publication and its citations and references organised in a multilayer network. In contrast to other works, our system supports assignments of publications to multiple fields by considering their multidisciplinarity potential. By unifying publications and venues under a common multilayer network structure made up of citing and publishing relationships, classifications at the venue-level can be augmented with publication-level classifications. We evaluate SciNoBo on a publications' dataset extracted from Microsoft Academic Graph and we perform a comparative analysis against a state-of-the-art neural-network baseline. The results reveal that our proposed system is capable of producing high-quality classifications of publications.
Abstract:We estimate the $n$-gram entropies of natural language texts in word-length representation and find that these are sensitive to text language and genre. We attribute this sensitivity to changes in the probability distribution of the lengths of single words and emphasize the crucial role of the uniformity of probabilities of having words with length between five and ten. Furthermore, comparison with the entropies of shuffled data reveals the impact of word length correlations on the estimated $n$-gram entropies.