Abstract:This paper employs a reinforcement learning-based model identification method aimed at enhancing the accuracy of the dynamics for our snake robot, called COBRA. Leveraging gradient information and iterative optimization, the proposed approach refines the parameters of COBRA's dynamical model such as coefficient of friction and actuator parameters using experimental and simulated data. Experimental validation on the hardware platform demonstrates the efficacy of the proposed approach, highlighting its potential to address sim-to-real gap in robot implementation.
Abstract:Object manipulation has been extensively studied in the context of fixed base and mobile manipulators. However, the overactuated locomotion modality employed by snake robots allows for a unique blend of object manipulation through locomotion, referred to as loco-manipulation. The following work presents an optimization approach to solving the loco-manipulation problem based on non-impulsive implicit contact path planning for our snake robot COBRA. We present the mathematical framework and show high-fidelity simulation results and experiments to demonstrate the effectiveness of our approach.
Abstract:Object manipulation has been extensively studied in the context of fixed base and mobile manipulators. However, the overactuated locomotion modality employed by snake robots allows for a unique blend of object manipulation through locomotion, referred to as loco-manipulation. The following work presents an optimization approach to solving the loco-manipulation problem based on non-impulsive implicit contact path planning for our snake robot COBRA. We present the mathematical framework and show high fidelity simulation results for fixed-shape lateral rolling trajectories that demonstrate the object manipulation.