Abstract:In image quality assessment, a collective visual quality score for an image or video is obtained from the individual ratings of many subjects. One commonly used format for these experiments is the two-alternative forced choice method. Two stimuli with the same content but differing visual quality are presented sequentially or side-by-side. Subjects are asked to select the one of better quality, and when uncertain, they are required to guess. The relaxed alternative forced choice format aims to reduce the cognitive load and the noise in the responses due to the guessing by providing a third response option, namely, ``not sure''. This work presents a large and comprehensive crowdsourcing experiment to compare these two response formats: the one with the ``not sure'' option and the one without it. To provide unambiguous ground truth for quality evaluation, subjects were shown pairs of images with differing numbers of dots and asked each time to choose the one with more dots. Our crowdsourcing study involved 254 participants and was conducted using a within-subject design. Each participant was asked to respond to 40 pair comparisons with and without the ``not sure'' response option and completed a questionnaire to evaluate their cognitive load for each testing condition. The experimental results show that the inclusion of the ``not sure'' response option in the forced choice method reduced mental load and led to models with better data fit and correspondence to ground truth. We also tested for the equivalence of the models and found that they were different. The dataset is available at http://database.mmsp-kn.de/cogvqa-database.html.
Abstract:Extracting significant places or places of interest (POIs) using individuals' spatio-temporal data is of fundamental importance for human mobility analysis. Classical clustering methods have been used in prior work for detecting POIs, but without considering temporal constraints. Usually, the involved parameters for clustering are difficult to determine, e.g., the optimal cluster number in hierarchical clustering. Currently, researchers either choose heuristic values or use spatial distance-based optimization to determine an appropriate parameter set. We argue that existing research does not optimally address temporal information and thus leaves much room for improvement. Considering temporal constraints in human mobility, we introduce an effective clustering approach - namely POI clustering with temporal constraints (PC-TC) - to extract POIs from spatio-temporal data of human mobility. Following human mobility nature in modern society, our approach aims to extract both global POIs (e.g., workplace or university) and local POIs (e.g., library, lab, and canteen). Based on two publicly available datasets including 193 individuals, our evaluation results show that PC-TC has much potential for next place prediction in terms of granularity (i.e., the number of extracted POIs) and predictability.