Abstract:Robust Unsupervised Domain Adaptation (RoUDA) aims to achieve not only clean but also robust cross-domain knowledge transfer from a labeled source domain to an unlabeled target domain. A number of works have been conducted by directly injecting adversarial training (AT) in UDA based on the self-training pipeline and then aiming to generate better adversarial examples (AEs) for AT. Despite the remarkable progress, these methods only focus on finding stronger AEs but neglect how to better learn from these AEs, thus leading to unsatisfied results. In this paper, we investigate robust UDA from a representation learning perspective and design a novel algorithm by utilizing the mutual information theory, dubbed MIRoUDA. Specifically, through mutual information optimization, MIRoUDA is designed to achieve three characteristics that are highly expected in robust UDA, i.e., robustness, discrimination, and generalization. We then propose a dual-model framework accordingly for robust UDA learning. Extensive experiments on various benchmarks verify the effectiveness of the proposed MIRoUDA, in which our method surpasses the state-of-the-arts by a large margin.
Abstract:Exploring and traversing extreme terrain with surface robots is difficult, but highly desirable for many applications, including exploration of planetary surfaces, search and rescue, among others. For these applications, to ensure the robot can predictably locomote, the interaction between the terrain and vehicle, terramechanics, must be incorporated into the model of the robot's locomotion. Modeling terramechanic effects is difficult and may be impossible in situations where the terrain is not known a priori. For these reasons, learning a terramechanics model online is desirable to increase the predictability of the robot's motion. A problem with previous implementations of learning algorithms is that the terramechanics model and corresponding generated control policies are not easily interpretable or extensible. If the models were of interpretable form, designers could use the learned models to inform vehicle and/or control design changes to refine the robot architecture for future applications. This paper explores a new method for learning a terramechanics model and a control policy using a model-based genetic algorithm. The proposed method yields an interpretable model, which can be analyzed using preexisting analysis methods. The paper provides simulation results that show for a practical application, the genetic algorithm performance is approximately equal to the performance of a state-of-the-art neural network approach, which does not provide an easily interpretable model.