Abstract:Defect depth quantification in additively manufactured (AM) components remains a significant challenge for non-destructive testing (NDT). This study proposes a Pixel-wise Quantitative Thermography Neural Network (PQT-Net) to address this challenge for polylactic acid (PLA) parts. A key innovation is a novel data augmentation strategy that reconstructs thermal sequence data into two-dimensional stripe images, preserving the complete temporal evolution of heat diffusion for each pixel. The PQT-Net architecture incorporates a pre-trained EfficientNetV2-S backbone and a custom Residual Regression Head (RRH) with learnable parameters to refine outputs. Comparative experiments demonstrate the superiority of PQT-Net over other deep learning models, achieving a minimum Mean Absolute Error (MAE) of 0.0094 mm and a coefficient of determination (R) exceeding 99%. The high precision of PQT-Net underscores its potential for robust quantitative defect characterization in AM.
Abstract:In complex environments, autonomous robot navigation and environmental perception pose higher requirements for SLAM technology. This paper presents a novel method for semantically enhancing 3D point cloud maps with thermal information. By first performing pixel-level fusion of visible and infrared images, the system projects real-time LiDAR point clouds onto this fused image stream. It then segments heat source features in the thermal channel to instantly identify high temperature targets and applies this temperature information as a semantic layer on the final 3D map. This approach generates maps that not only have accurate geometry but also possess a critical semantic understanding of the environment, making it highly valuable for specific applications like rapid disaster assessment and industrial preventive maintenance.
Abstract:Traditional two-dimensional thermography, despite being non-invasive and useful for defect detection in the construction field, is limited in effectively assessing complex geometries, inaccessible areas, and subsurface defects. This paper introduces Thermo-LIO, a novel multi-sensor system that can enhance Structural Health Monitoring (SHM) by fusing thermal imaging with high-resolution LiDAR. To achieve this, the study first develops a multimodal fusion method combining thermal imaging and LiDAR, enabling precise calibration and synchronization of multimodal data streams to create accurate representations of temperature distributions in buildings. Second, it integrates this fusion approach with LiDAR-Inertial Odometry (LIO), enabling full coverage of large-scale structures and allowing for detailed monitoring of temperature variations and defect detection across inspection cycles. Experimental validations, including case studies on a bridge and a hall building, demonstrate that Thermo-LIO can detect detailed thermal anomalies and structural defects more accurately than traditional methods. The system enhances diagnostic precision, enables real-time processing, and expands inspection coverage, highlighting the crucial role of multimodal sensor integration in advancing SHM methodologies for large-scale civil infrastructure.
Abstract:This paper addresses the critical bottleneck of infrared (IR) data scarcity in Printed Circuit Board (PCB) defect detection by proposing a cross-modal data augmentation framework integrating CycleGAN and YOLOv8. Unlike conventional methods relying on paired supervision, we leverage CycleGAN to perform unpaired image-to-image translation, mapping abundant visible-light PCB images into the infrared domain. This generative process synthesizes high-fidelity pseudo-IR samples that preserve the structural semantics of defects while accurately simulating thermal distribution patterns. Subsequently, we construct a heterogeneous training strategy that fuses generated pseudo-IR data with limited real IR samples to train a lightweight YOLOv8 detector. Experimental results demonstrate that this method effectively enhances feature learning under low-data conditions. The augmented detector significantly outperforms models trained on limited real data alone and approaches the performance benchmarks of fully supervised training, proving the efficacy of pseudo-IR synthesis as a robust augmentation strategy for industrial inspection.
Abstract:Robust Unsupervised Domain Adaptation (RoUDA) aims to achieve not only clean but also robust cross-domain knowledge transfer from a labeled source domain to an unlabeled target domain. A number of works have been conducted by directly injecting adversarial training (AT) in UDA based on the self-training pipeline and then aiming to generate better adversarial examples (AEs) for AT. Despite the remarkable progress, these methods only focus on finding stronger AEs but neglect how to better learn from these AEs, thus leading to unsatisfied results. In this paper, we investigate robust UDA from a representation learning perspective and design a novel algorithm by utilizing the mutual information theory, dubbed MIRoUDA. Specifically, through mutual information optimization, MIRoUDA is designed to achieve three characteristics that are highly expected in robust UDA, i.e., robustness, discrimination, and generalization. We then propose a dual-model framework accordingly for robust UDA learning. Extensive experiments on various benchmarks verify the effectiveness of the proposed MIRoUDA, in which our method surpasses the state-of-the-arts by a large margin.




Abstract:Exploring and traversing extreme terrain with surface robots is difficult, but highly desirable for many applications, including exploration of planetary surfaces, search and rescue, among others. For these applications, to ensure the robot can predictably locomote, the interaction between the terrain and vehicle, terramechanics, must be incorporated into the model of the robot's locomotion. Modeling terramechanic effects is difficult and may be impossible in situations where the terrain is not known a priori. For these reasons, learning a terramechanics model online is desirable to increase the predictability of the robot's motion. A problem with previous implementations of learning algorithms is that the terramechanics model and corresponding generated control policies are not easily interpretable or extensible. If the models were of interpretable form, designers could use the learned models to inform vehicle and/or control design changes to refine the robot architecture for future applications. This paper explores a new method for learning a terramechanics model and a control policy using a model-based genetic algorithm. The proposed method yields an interpretable model, which can be analyzed using preexisting analysis methods. The paper provides simulation results that show for a practical application, the genetic algorithm performance is approximately equal to the performance of a state-of-the-art neural network approach, which does not provide an easily interpretable model.