Abstract:Federated learning (FL) algorithms commonly aim to maximize clients' accuracy by training a model on their collective data. However, in several FL applications, the model's decisions should meet a group fairness constraint to be independent of sensitive attributes such as gender or race. While such group fairness constraints can be incorporated into the objective function of the FL optimization problem, in this work, we show that such an approach would lead to suboptimal classification accuracy in an FL setting with heterogeneous client distributions. To achieve an optimal accuracy-group fairness trade-off, we propose the Personalized Federated Learning for Client-Level Group Fairness (pFedFair) framework, where clients locally impose their fairness constraints over the distributed training process. Leveraging the image embedding models, we extend the application of pFedFair to computer vision settings, where we numerically show that pFedFair achieves an optimal group fairness-accuracy trade-off in heterogeneous FL settings. We present the results of several numerical experiments on benchmark and synthetic datasets, which highlight the suboptimality of non-personalized FL algorithms and the improvements made by the pFedFair method.
Abstract:Fair supervised learning algorithms assigning labels with little dependence on a sensitive attribute have attracted great attention in the machine learning community. While the demographic parity (DP) notion has been frequently used to measure a model's fairness in training fair classifiers, several studies in the literature suggest potential impacts of enforcing DP in fair learning algorithms. In this work, we analytically study the effect of standard DP-based regularization methods on the conditional distribution of the predicted label given the sensitive attribute. Our analysis shows that an imbalanced training dataset with a non-uniform distribution of the sensitive attribute could lead to a classification rule biased toward the sensitive attribute outcome holding the majority of training data. To control such inductive biases in DP-based fair learning, we propose a sensitive attribute-based distributionally robust optimization (SA-DRO) method improving robustness against the marginal distribution of the sensitive attribute. Finally, we present several numerical results on the application of DP-based learning methods to standard centralized and distributed learning problems. The empirical findings support our theoretical results on the inductive biases in DP-based fair learning algorithms and the debiasing effects of the proposed SA-DRO method.