Abstract:Subgraph-based methods have proven to be effective and interpretable in predicting drug-drug interactions (DDIs), which are essential for medical practice and drug development. Subgraph selection and encoding are critical stages in these methods, yet customizing these components remains underexplored due to the high cost of manual adjustments. In this study, inspired by the success of neural architecture search (NAS), we propose a method to search for data-specific components within subgraph-based frameworks. Specifically, we introduce extensive subgraph selection and encoding spaces that account for the diverse contexts of drug interactions in DDI prediction. To address the challenge of large search spaces and high sampling costs, we design a relaxation mechanism that uses an approximation strategy to efficiently explore optimal subgraph configurations. This approach allows for robust exploration of the search space. Extensive experiments demonstrate the effectiveness and superiority of the proposed method, with the discovered subgraphs and encoding functions highlighting the model's adaptability.
Abstract:Completing missing facts is a fundamental task for temporal knowledge graphs (TKGs). Recently, graph neural network (GNN) based methods, which can simultaneously explore topological and temporal information, have become the state-of-the-art (SOTA) to complete TKGs. However, these studies are based on hand-designed architectures and fail to explore the diverse topological and temporal properties of TKG. To address this issue, we propose to use neural architecture search (NAS) to design data-specific message passing architecture for TKG completion. In particular, we develop a generalized framework to explore topological and temporal information in TKGs. Based on this framework, we design an expressive search space to fully capture various properties of different TKGs. Meanwhile, we adopt a search algorithm, which trains a supernet structure by sampling single path for efficient search with less cost. We further conduct extensive experiments on three benchmark datasets. The results show that the searched architectures by our method achieve the SOTA performances. Besides, the searched models can also implicitly reveal diverse properties in different TKGs. Our code is released in https://github.com/striderdu/SPA.