Abstract:Recent advancements in 3D Gaussian Splatting have achieved impressive scalability and real-time rendering for large-scale scenes but often fall short in capturing fine-grained details. Conventional approaches that rely on relatively large covariance parameters tend to produce blurred representations, while directly reducing covariance sizes leads to sparsity. In this work, we introduce Micro-splatting (Maximizing Isotropic Constraints for Refined Optimization in 3D Gaussian Splatting), a novel framework designed to overcome these limitations. Our approach leverages a covariance regularization term to penalize excessively large Gaussians to ensure each splat remains compact and isotropic. This work implements an adaptive densification strategy that dynamically refines regions with high image gradients by lowering the splitting threshold, followed by loss function enhancement. This strategy results in a denser and more detailed gaussian means where needed, without sacrificing rendering efficiency. Quantitative evaluations using metrics such as L1, L2, PSNR, SSIM, and LPIPS, alongside qualitative comparisons demonstrate that our method significantly enhances fine-details in 3D reconstructions.
Abstract:This paper presents a novel masked attention-based 3D Gaussian Splatting (3DGS) approach to enhance robotic perception and object detection in industrial and smart factory environments. U2-Net is employed for background removal to isolate target objects from raw images, thereby minimizing clutter and ensuring that the model processes only relevant data. Additionally, a Sobel filter-based attention mechanism is integrated into the 3DGS framework to enhance fine details - capturing critical features such as screws, wires, and intricate textures essential for high-precision tasks. We validate our approach using quantitative metrics, including L1 loss, SSIM, PSNR, comparing the performance of the background-removed and attention-incorporated 3DGS model against the ground truth images and the original 3DGS training baseline. The results demonstrate significant improves in visual fidelity and detail preservation, highlighting the effectiveness of our method in enhancing robotic vision for object recognition and manipulation in complex industrial settings.
Abstract:An onboard prediction of dynamic parameters (e.g. Aerodynamic drag, rolling resistance) enables accurate path planning for EVs. This paper presents EV-PINN, a Physics-Informed Neural Network approach in predicting instantaneous battery power and cumulative energy consumption during cruising while generalizing to the nonlinear dynamics of an EV. Our method learns real-world parameters such as motor efficiency, regenerative braking efficiency, vehicle mass, coefficient of aerodynamic drag, and coefficient of rolling resistance using automatic differentiation based on dynamics and ensures consistency with ground truth vehicle data. EV-PINN was validated using 15 and 35 minutes of in-situ battery log data from the Tesla Model 3 Long Range and Tesla Model S, respectively. With only vehicle speed and time as inputs, our model achieves high accuracy and generalization to dynamics, with validation losses of 0.002195 and 0.002292, respectively. This demonstrates EV-PINN's effectiveness in estimating parameters and predicting battery usage under actual driving conditions without the need for additional sensors.