Abstract:Medical Ultrasound (US) imaging has seen increasing demands over the past years, becoming one of the most preferred imaging modalities in clinical practice due to its affordability, portability, and real-time capabilities. However, it faces several challenges that limit its applicability, such as operator dependency, variability in interpretation, and limited resolution, which are amplified by the low availability of trained experts. This calls for the need of autonomous systems that are capable of reducing the dependency on humans for increased efficiency and throughput. Reinforcement Learning (RL) comes as a rapidly advancing field under Artificial Intelligence (AI) that allows the development of autonomous and intelligent agents that are capable of executing complex tasks through rewarded interactions with their environments. Existing surveys on advancements in the US scanning domain predominantly focus on partially autonomous solutions leveraging AI for scanning guidance, organ identification, plane recognition, and diagnosis. However, none of these surveys explore the intersection between the stages of the US process and the recent advancements in RL solutions. To bridge this gap, this review proposes a comprehensive taxonomy that integrates the stages of the US process with the RL development pipeline. This taxonomy not only highlights recent RL advancements in the US domain but also identifies unresolved challenges crucial for achieving fully autonomous US systems. This work aims to offer a thorough review of current research efforts, highlighting the potential of RL in building autonomous US solutions while identifying limitations and opportunities for further advancements in this field.
Abstract:Cardiac ultrasound (US) scanning is a commonly used techniques in cardiology to diagnose the health of the heart and its proper functioning. Therefore, it is necessary to consider ways to automate these tasks and assist medical professionals in classifying and assessing cardiac US images. Machine learning (ML) techniques are regarded as a prominent solution due to their success in numerous applications aimed at enhancing the medical field, including addressing the shortage of echography technicians. However, the limited availability of medical data presents a significant barrier to applying ML in cardiology, particularly regarding US images of the heart. This paper addresses this challenge by introducing the first open graded dataset for Cardiac Assessment and ClassificaTion of UltraSound (CACTUS), which is available online. This dataset contains images obtained from scanning a CAE Blue Phantom and representing various heart views and different quality levels, exceeding the conventional cardiac views typically found in the literature. Additionally, the paper introduces a Deep Learning (DL) framework consisting of two main components. The first component classifies cardiac US images based on the heart view using a Convolutional Neural Network (CNN). The second component uses Transfer Learning (TL) to fine-tune the knowledge from the first component and create a model for grading and assessing cardiac images. The framework demonstrates high performance in both classification and grading, achieving up to 99.43% accuracy and as low as 0.3067 error, respectively. To showcase its robustness, the framework is further fine-tuned using new images representing additional cardiac views and compared to several other state-of-the-art architectures. The framework's outcomes and performance in handling real-time scans were also assessed using a questionnaire answered by cardiac experts.
Abstract:This survey paper explores the transformative role of Machine Learning (ML) and Artificial Intelligence (AI) in Cardiopulmonary Resuscitation (CPR). It examines the evolution from traditional CPR methods to innovative ML-driven approaches, highlighting the impact of predictive modeling, AI-enhanced devices, and real-time data analysis in improving resuscitation outcomes. The paper provides a comprehensive overview, classification, and critical analysis of current applications, challenges, and future directions in this emerging field.
Abstract:Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data. Unlike conventional neural networks or updated versions of Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM), transformer models excel in handling long dependencies between input sequence elements and enable parallel processing. As a result, transformer-based models have attracted substantial interest among researchers in the field of artificial intelligence. This can be attributed to their immense potential and remarkable achievements, not only in Natural Language Processing (NLP) tasks but also in a wide range of domains, including computer vision, audio and speech processing, healthcare, and the Internet of Things (IoT). Although several survey papers have been published highlighting the transformer's contributions in specific fields, architectural differences, or performance evaluations, there is still a significant absence of a comprehensive survey paper encompassing its major applications across various domains. Therefore, we undertook the task of filling this gap by conducting an extensive survey of proposed transformer models from 2017 to 2022. Our survey encompasses the identification of the top five application domains for transformer-based models, namely: NLP, Computer Vision, Multi-Modality, Audio and Speech Processing, and Signal Processing. We analyze the impact of highly influential transformer-based models in these domains and subsequently classify them based on their respective tasks using a proposed taxonomy. Our aim is to shed light on the existing potential and future possibilities of transformers for enthusiastic researchers, thus contributing to the broader understanding of this groundbreaking technology.