Abstract:In a modern power system, real-time data on power generation/consumption and its relevant features are stored in various distributed parties, including household meters, transformer stations and external organizations. To fully exploit the underlying patterns of these distributed data for accurate power prediction, federated learning is needed as a collaborative but privacy-preserving training scheme. However, current federated learning frameworks are polarized towards addressing either the horizontal or vertical separation of data, and tend to overlook the case where both are present. Furthermore, in mainstream horizontal federated learning frameworks, only artificial neural networks are employed to learn the data patterns, which are considered less accurate and interpretable compared to tree-based models on tabular datasets. To this end, we propose a hybrid federated learning framework based on XGBoost, for distributed power prediction from real-time external features. In addition to introducing boosted trees to improve accuracy and interpretability, we combine horizontal and vertical federated learning, to address the scenario where features are scattered in local heterogeneous parties and samples are scattered in various local districts. Moreover, we design a dynamic task allocation scheme such that each party gets a fair share of information, and the computing power of each party can be fully leveraged to boost training efficiency. A follow-up case study is presented to justify the necessity of adopting the proposed framework. The advantages of the proposed framework in fairness, efficiency and accuracy performance are also confirmed.
Abstract:With the deployment of smart sensors and advancements in communication technologies, big data analytics have become vastly popular in the smart grid domain, informing stakeholders of the best power utilization strategy. However, these power-related data are stored and owned by different parties. For example, power consumption data are stored in numerous transformer stations across cities; mobility data of the population, which are important indicators of power consumption, are held by mobile companies. Direct data sharing might compromise party benefits, individual privacy and even national security. Inspired by the federated learning scheme from Google AI, we propose a federated learning framework for smart grids, which enables collaborative learning of power consumption patterns without leaking individual power traces. Horizontal federated learning is employed when data are scattered in the sample space; vertical federated learning, on the other hand, is designed for the case with data scattered in the feature space. Case studies show that, with proper encryption schemes such as Paillier encryption, the machine learning models constructed from the proposed framework are lossless, privacy-preserving and effective. Finally, the promising future of federated learning in other facets of the smart grid is discussed, including electric vehicles, distributed generation/consumption and integrated energy systems.