Abstract:The long-tailed recognition (LTR) is the task of learning high-performance classifiers given extremely imbalanced training samples between categories. Most of the existing works address the problem by either enhancing the features of tail classes or re-balancing the classifiers to reduce the inductive bias. In this paper, we try to look into the root cause of the LTR task, i.e., training samples for each class are greatly imbalanced, and propose a straightforward solution. We split the categories into three groups, i.e., many, medium and few, according to the number of training images. The three groups of categories are separately predicted to reduce the difficulty for classification. This idea naturally arises a new problem of how to assign a given sample to the right class groups? We introduce a mutual exclusive modulator which can estimate the probability of an image belonging to each group. Particularly, the modulator consists of a light-weight module and learned with a mutual exclusive objective. Hence, the output probabilities of the modulator encode the data volume clues of the training dataset. They are further utilized as prior information to guide the prediction of the classifier. We conduct extensive experiments on multiple datasets, e.g., ImageNet-LT, Place-LT and iNaturalist 2018 to evaluate the proposed approach. Our method achieves competitive performance compared to the state-of-the-art benchmarks.
Abstract:Offline Chinese handwriting text recognition is a long-standing research topic in the field of pattern recognition. In previous studies, text detection and recognition are separated, which leads to the fact that text recognition is highly dependent on the detection results. In this paper, we propose a robust end-to-end Chinese text page spotter framework. It unifies text detection and text recognition with text kernel that integrates global text feature information to optimize the recognition from multiple scales, which reduces the dependence of detection and improves the robustness of the system. Our method achieves state-of-the-art results on the CASIA-HWDB2.0-2.2 dataset and ICDAR-2013 competition dataset. Without any language model, the correct rates are 99.12% and 94.27% for line-level recognition, and 99.03% and 94.20% for page-level recognition, respectively.