Abstract:Imbalanced electrocardiogram (ECG) data hampers the efficacy and resilience of algorithms in the automated processing and interpretation of cardiovascular diagnostic information, which in turn impedes deep learning-based ECG classification. Notably, certain cardiac conditions that are infrequently encountered are disproportionately underrepresented in these datasets. Although algorithmic generation and oversampling of specific ECG signal types can mitigate class skew, there is a lack of consensus regarding the effectiveness of such techniques in ECG classification. Furthermore, the methodologies and scenarios of ECG acquisition introduce noise, further complicating the processing of ECG data. This paper presents a significantly enhanced ECG classifier that simultaneously addresses both class imbalance and noise-related challenges in ECG analysis, as observed in the CPSC 2018 dataset. Specifically, we propose the application of feature fusion based on the wavelet transform, with a focus on wavelet transform-based interclass fusion, to generate the training feature library and the test set feature library. Subsequently, the original training and test data are amalgamated with their respective feature databases, resulting in more balanced training and test datasets. Employing this approach, our ECG model achieves recognition accuracies of up to 99%, 98%, 97%, 98%, 96%, 92%, and 93% for Normal, AF, I-AVB, LBBB, RBBB, PAC, PVC, STD, and STE, respectively. Furthermore, the average recognition accuracy for these categories ranges between 92\% and 98\%. Notably, our proposed data fusion methodology surpasses any known algorithms in terms of ECG classification accuracy in the CPSC 2018 dataset.
Abstract:We propose Spectral Complex Autoencoder Pruning (SCAP), a reconstruction-based criterion that measures functional redundancy at the level of individual output channels. For each convolutional layer, we construct a complex interaction field by pairing the full multi-channel input activation as the real part with a single output-channel activation (spatially aligned and broadcast across input channels) as the imaginary part. We transform this complex field to the frequency domain and train a low-capacity autoencoder to reconstruct normalized spectra. Channels whose spectra are reconstructed with high fidelity are interpreted as lying close to a low-dimensional manifold captured by the autoencoder and are therefore more compressible; conversely, channels with low fidelity are retained as they encode information that cannot be compactly represented by the learned manifold. This yields an importance score (optionally fused with the filter L1 norm) that supports simple threshold-based pruning and produces a structurally consistent pruned network. On VGG16 trained on CIFAR-10, at a fixed threshold of 0.6, we obtain 90.11% FLOP reduction and 96.30% parameter reduction with an absolute Top-1 accuracy drop of 1.67% from a 93.44% baseline after fine-tuning, demonstrating that spectral reconstruction fidelity of complex interaction fields is an effective proxy for channel-level redundancy under aggressive compression.
Abstract:Quantum neural networks (QNNs) suffer from severe gate-level redundancy, which hinders their deployment on noisy intermediate-scale quantum (NISQ) devices. In this work, we propose q-iPrune, a one-shot structured pruning framework grounded in the algebraic structure of $q$-deformed groups and task-conditioned quantum geometry. Unlike prior heuristic or gradient-based pruning methods, q-iPrune formulates redundancy directly at the gate level. Each gate is compared within an algebraically consistent subgroup using a task-conditioned $q$-overlap distance, which measures functional similarity through state overlaps on a task-relevant ensemble. A gate is removed only when its replacement by a subgroup representative provably induces a bounded deviation on all task observables. We establish three rigorous theoretical guarantees. First, we prove completeness of redundancy pruning: no gate that violates the prescribed similarity threshold is removed. Second, we show that the pruned circuit is functionally equivalent up to an explicit, task-conditioned error bound, with a closed-form dependence on the redundancy tolerance and the number of replaced gates. Third, we prove that the pruning procedure is computationally feasible, requiring only polynomial-time comparisons and avoiding exponential enumeration over the Hilbert space. To adapt pruning decisions to hardware imperfections, we introduce a noise-calibrated deformation parameter $λ$ that modulates the $q$-geometry and redundancy tolerance. Experiments on standard quantum machine learning benchmarks demonstrate that q-iPrune achieves substantial gate reduction while maintaining bounded task performance degradation, consistent with our theoretical guarantees.
Abstract:Quantum neural networks (QNNs) and parameterized quantum circuits (PQCs) are key building blocks for near-term quantum machine learning. However, their scalability is constrained by excessive parameters, barren plateaus, and hardware limitations. We propose LiePrune, the first mathematically grounded one-shot structured pruning framework for QNNs that leverages Lie group structure and quantum geometric information. Each gate is jointly represented in a Lie group--Lie algebra dual space and a quantum geometric feature space, enabling principled redundancy detection and aggressive compression. Experiments on quantum classification (MNIST, FashionMNIST), quantum generative modeling (Bars-and-Stripes), and quantum chemistry (LiH VQE) show that LiePrune achieves over $10\times$ compression with negligible or even improved task performance, while providing provable guarantees on redundancy detection, functional approximation, and computational complexity.
Abstract:Amid growing global mental health concerns, particularly among vulnerable groups, natural language processing offers a tremendous potential for early detection and intervention of people's mental disorders via analyzing their postings and discussions on social media platforms. However, ultra-sparse training data, often due to vast vocabularies and low-frequency words, hinders the analysis accuracy. Multi-labeling and Co-occurrences of symptoms may also blur the boundaries in distinguishing similar/co-related disorders. To address these issues, we propose a novel semantic feature preprocessing technique with a three-folded structure: 1) mitigating the feature sparsity with a weak classifier, 2) adaptive feature dimension with modulus loops, and 3) deep-mining and extending features among the contexts. With enhanced semantic features, we train a machine learning model to predict and classify mental disorders. We utilize the Reddit Mental Health Dataset 2022 to examine conditions such as Anxiety, Borderline Personality Disorder (BPD), and Bipolar-Disorder (BD) and present solutions to the data sparsity challenge, highlighted by 99.81% non-zero elements. After applying our preprocessing technique, the feature sparsity decreases to 85.4%. Overall, our methods, when compared to seven benchmark models, demonstrate significant performance improvements: 8.0% in accuracy, 0.069 in precision, 0.093 in recall, 0.102 in F1 score, and 0.059 in AUC. This research provides foundational insights for mental health prediction and monitoring, providing innovative solutions to navigate challenges associated with ultra-sparse data feature and intricate multi-label classification in the domain of mental health analysis.




Abstract:Unmanned Aerial Vehicles (UAVs) are widely used and meet many demands in military and civilian fields. With the continuous enrichment and extensive expansion of application scenarios, the safety of UAVs is constantly being challenged. To address this challenge, we propose algorithms to detect anomalous data collected from drones to improve drone safety. We deployed a one-class kernel extreme learning machine (OCKELM) to detect anomalies in drone data. By default, OCKELM uses the radial basis (RBF) kernel function as the kernel function of the model. To improve the performance of OCKELM, we choose a Triangular Global Alignment Kernel (TGAK) instead of an RBF Kernel and introduce the Fast Independent Component Analysis (FastICA) algorithm to reconstruct UAV data. Based on the above improvements, we create a novel anomaly detection strategy FastICA-TGAK-OCELM. The method is finally validated on the UCI dataset and detected on the Aeronautical Laboratory Failures and Anomalies (ALFA) dataset. The experimental results show that compared with other methods, the accuracy of this method is improved by more than 30%, and point anomalies are effectively detected.