Abstract:Wide Area Motion Imagery (WAMI) yields high resolution images with a large number of extremely small objects. Target objects have large spatial displacements throughout consecutive frames. This nature of WAMI images makes object tracking and detection challenging. In this paper, we present our deep neural network-based combined object detection and tracking model, namely, Heat Map Network (HM-Net). HM-Net is significantly faster than state-of-the-art frame differencing and background subtraction-based methods, without compromising detection and tracking performances. HM-Net follows object center-based joint detection and tracking paradigm. Simple heat map-based predictions support unlimited number of simultaneous detections. The proposed method uses two consecutive frames and the object detection heat map obtained from the previous frame as input, which helps HM-Net monitor spatio-temporal changes between frames and keeps track of previously predicted objects. Although reuse of prior object detection heat map acts as a vital feedback-based memory element, it can lead to unintended surge of false positive detections. To increase robustness of the method against false positives and to eliminate low confidence detections, HM-Net employs novel feedback filters and advanced data augmentations. HM-Net outperforms state-of-the-art WAMI moving object detection and tracking methods on WPAFB dataset with its 96.2% F1 and 94.4% mAP detection scores, while achieving a 61.8% mAP tracking score on the same dataset.
Abstract:Neural network deployment on low-cost embedded systems, hence on microcontrollers (MCUs), has recently been attracting more attention than ever. Since MCUs have limited memory capacity as well as limited compute-speed, it is critical that we employ model compression, which reduces both memory and compute-speed requirements. In this paper, we add model compression, specifically Deep Compression, and further optimize Unlu's earlier work on arXiv, which efficiently deploys PyTorch models on MCUs. First, we prune the weights in convolutional and fully connected layers. Secondly, the remaining weights and activations are quantized to 8-bit integers from 32-bit floating-point. Finally, forward pass functions are compressed using special data structures for sparse matrices, which store only nonzero weights (without impacting performance and accuracy). In the case of the LeNet-5 model, the memory footprint was reduced by 12.45x, and the inference speed was boosted by 2.57x.