Abstract:Current generative video models excel at producing novel content from text and image prompts, but leave a critical gap in editing existing pre-recorded videos, where minor alterations to the spoken script require preserving motion, temporal coherence, speaker identity, and accurate lip synchronization. We introduce EditYourself, a DiT-based framework for audio-driven video-to-video (V2V) editing that enables transcript-based modification of talking head videos, including the seamless addition, removal, and retiming of visually spoken content. Building on a general-purpose video diffusion model, EditYourself augments its V2V capabilities with audio conditioning and region-aware, edit-focused training extensions. This enables precise lip synchronization and temporally coherent restructuring of existing performances via spatiotemporal inpainting, including the synthesis of realistic human motion in newly added segments, while maintaining visual fidelity and identity consistency over long durations. This work represents a foundational step toward generative video models as practical tools for professional video post-production.




Abstract:We present Semantify: a self-supervised method that utilizes the semantic power of CLIP language-vision foundation model to simplify the control of 3D morphable models. Given a parametric model, training data is created by randomly sampling the model's parameters, creating various shapes and rendering them. The similarity between the output images and a set of word descriptors is calculated in CLIP's latent space. Our key idea is first to choose a small set of semantically meaningful and disentangled descriptors that characterize the 3DMM, and then learn a non-linear mapping from scores across this set to the parametric coefficients of the given 3DMM. The non-linear mapping is defined by training a neural network without a human-in-the-loop. We present results on numerous 3DMMs: body shape models, face shape and expression models, as well as animal shapes. We demonstrate how our method defines a simple slider interface for intuitive modeling, and show how the mapping can be used to instantly fit a 3D parametric body shape to in-the-wild images.




Abstract:We present dynamic neural radiance fields for modeling the appearance and dynamics of a human face. Digitally modeling and reconstructing a talking human is a key building-block for a variety of applications. Especially, for telepresence applications in AR or VR, a faithful reproduction of the appearance including novel viewpoints or head-poses is required. In contrast to state-of-the-art approaches that model the geometry and material properties explicitly, or are purely image-based, we introduce an implicit representation of the head based on scene representation networks. To handle the dynamics of the face, we combine our scene representation network with a low-dimensional morphable model which provides explicit control over pose and expressions. We use volumetric rendering to generate images from this hybrid representation and demonstrate that such a dynamic neural scene representation can be learned from monocular input data only, without the need of a specialized capture setup. In our experiments, we show that this learned volumetric representation allows for photo-realistic image generation that surpasses the quality of state-of-the-art video-based reenactment methods.