Abstract:We propose quantum algorithms that provide provable speedups for Markov Chain Monte Carlo (MCMC) methods commonly used for sampling from probability distributions of the form $\pi \propto e^{-f}$, where $f$ is a potential function. Our first approach considers Gibbs sampling for finite-sum potentials in the stochastic setting, employing an oracle that provides gradients of individual functions. In the second setting, we consider access only to a stochastic evaluation oracle, allowing simultaneous queries at two points of the potential function under the same stochastic parameter. By introducing novel techniques for stochastic gradient estimation, our algorithms improve the gradient and evaluation complexities of classical samplers, such as Hamiltonian Monte Carlo (HMC) and Langevin Monte Carlo (LMC) in terms of dimension, precision, and other problem-dependent parameters. Furthermore, we achieve quantum speedups in optimization, particularly for minimizing non-smooth and approximately convex functions that commonly appear in empirical risk minimization problems.
Abstract:We present quantum algorithms for sampling from non-logconcave probability distributions in the form of $\pi(x) \propto \exp(-\beta f(x))$. Here, $f$ can be written as a finite sum $f(x):= \frac{1}{N}\sum_{k=1}^N f_k(x)$. Our approach is based on quantum simulated annealing on slowly varying Markov chains derived from unadjusted Langevin algorithms, removing the necessity for function evaluations which can be computationally expensive for large data sets in mixture modeling and multi-stable systems. We also incorporate a stochastic gradient oracle that implements the quantum walk operators inexactly by only using mini-batch gradients. As a result, our stochastic gradient based algorithm only accesses small subsets of data points in implementing the quantum walk. One challenge of quantizing the resulting Markov chains is that they do not satisfy the detailed balance condition in general. Consequently, the mixing time of the algorithm cannot be expressed in terms of the spectral gap of the transition density, making the quantum algorithms nontrivial to analyze. To overcome these challenges, we first build a hypothetical Markov chain that is reversible, and also converges to the target distribution. Then, we quantified the distance between our algorithm's output and the target distribution by using this hypothetical chain as a bridge to establish the total complexity. Our quantum algorithms exhibit polynomial speedups in terms of both dimension and precision dependencies when compared to the best-known classical algorithms.