LJAD
Abstract:Block-coordinate descent (BCD) is the method of choice to solve numerous large scale optimization problems, however their theoretical study for non-convex optimization, has received less attention. In this paper, we present a new block-coordinate descent (BCD) framework to tackle non-convex composite optimization problems, ensuring decrease of the objective function and convergence to a solution. This framework is general enough to include variable metric proximal gradient updates, proximal Newton updates, and alternated minimization updates. This generality allows to encompass three versions of the most used solvers in the sparse precision matrix estimation problem, deemed Graphical Lasso: graphical ISTA, Primal GLasso, and QUIC. We demonstrate the value of this new framework on non-convex sparse precision matrix estimation problems, providing convergence guarantees and up to a $100$-fold reduction in the number of iterations required to reach state-of-the-art estimation quality.
Abstract:In this article, we investigate the potential of multilevel approaches to accelerate the training of transformer architectures. Using an ordinary differential equation (ODE) interpretation of these architectures, we propose an appropriate way of varying the discretization of these ODE Transformers in order to accelerate the training. We validate our approach experimentally by a comparison with the standard training procedure.
Abstract:This article measures how sparsity can make neural networks more robust to membership inference attacks. The obtained empirical results show that sparsity improves the privacy of the network, while preserving comparable performances on the task at hand. This empirical study completes and extends existing literature.
Abstract:This article measures how sparsity can make neural networks more robust to membership inference attacks. The obtained empirical results show that sparsity improves the privacy of the network, while preserving comparable performances on the task at hand. This empirical study completes and extends existing literature.