Abstract:This paper address the challenges encountered by developers when deploying a distributed decision-making behavior on heterogeneous robotic systems. Many applications benefit from the use of multiple robots, but their scalability and applicability are fundamentally limited if relying on a central control station. Getting beyond the centralized approach can increase the complexity of the embedded intelligence, the sensitivity to the network topology, and render the deployment on physical robots tedious and error-prone. By integrating the swarm-oriented programming language Buzz with the standard environment of ROS, this work demonstrates that behaviors requiring distributed consensus can be successfully deployed in practice. From simulation to the field, the behavioral script stays untouched and applicable to heterogeneous robot teams. We present the software structure of our solution as well as the swarm-oriented paradigms required from Buzz to implement a robust generic consensus strategy. We show the applicability of our solution with simulations and experiments with heterogeneous ground-and-air robotic teams.