Abstract:Deep learning models have become increasingly popular for flood prediction due to their superior accuracy and efficiency compared to traditional methods. However, current machine learning methods often rely on separate spatial or temporal feature analysis and have limitations on the types, number, and dimensions of input data. This study presented a CNN-RNN hybrid feature fusion modelling approach for urban flood prediction, which integrated the strengths of CNNs in processing spatial features and RNNs in analyzing different dimensions of time sequences. This approach allowed for both static and dynamic flood predictions. Bayesian optimization was applied to identify the seven most influential flood-driven factors and determine the best combination strategy. By combining four CNNs (FCN, UNet, SegNet, DeepLabv3+) and three RNNs (LSTM, BiLSTM, GRU), the optimal hybrid model was identified as LSTM-DeepLabv3+. This model achieved the highest prediction accuracy (MAE, RMSE, NSE, and KGE were 0.007, 0.025, 0.973 and 0.755, respectively) under various rainfall input conditions. Additionally, the processing speed was significantly improved, with an inference time of 1.158s (approximately 1/125 of the traditional computation time) compared to the physically-based models.
Abstract:When solving constrained multi-objective optimization problems, an important issue is how to balance convergence, diversity and feasibility simultaneously. To address this issue, this paper proposes a parameter-free constraint handling technique, two-archive evolutionary algorithm, for constrained multi-objective optimization. It maintains two co-evolving populations simultaneously: one, denoted as convergence archive, is the driving force to push the population toward the Pareto front; the other one, denoted as diversity archive, mainly tends to maintain the population diversity. In particular, to complement the behavior of the convergence archive and provide as much diversified information as possible, the diversity archive aims at exploring areas under-exploited by the convergence archive including the infeasible regions. To leverage the complementary effects of both archives, we develop a restricted mating selection mechanism that adaptively chooses appropriate mating parents from them according to their evolution status. Comprehensive experiments on a series of benchmark problems and a real-world case study fully demonstrate the competitiveness of our proposed algorithm, comparing to five state-of-the-art constrained evolutionary multi-objective optimizers.