Abstract:Multi-Source cross-lingual transfer learning deals with the transfer of task knowledge from multiple labelled source languages to an unlabeled target language under the language shift. Existing methods typically focus on weighting the predictions produced by language-specific classifiers of different sources that follow a shared encoder. However, all source languages share the same encoder, which is updated by all these languages. The extracted representations inevitably contain different source languages' information, which may disturb the learning of the language-specific classifiers. Additionally, due to the language gap, language-specific classifiers trained with source labels are unable to make accurate predictions for the target language. Both facts impair the model's performance. To address these challenges, we propose a Disentangled and Adaptive Network (DA-Net). Firstly, we devise a feedback-guided collaborative disentanglement method that seeks to purify input representations of classifiers, thereby mitigating mutual interference from multiple sources. Secondly, we propose a class-aware parallel adaptation method that aligns class-level distributions for each source-target language pair, thereby alleviating the language pairs' language gap. Experimental results on three different tasks involving 38 languages validate the effectiveness of our approach.
Abstract:For named entity recognition (NER) in zero-resource languages, utilizing knowledge distillation methods to transfer language-independent knowledge from the rich-resource source languages to zero-resource languages is an effective means. Typically, these approaches adopt a teacher-student architecture, where the teacher network is trained in the source language, and the student network seeks to learn knowledge from the teacher network and is expected to perform well in the target language. Despite the impressive performance achieved by these methods, we argue that they have two limitations. Firstly, the teacher network fails to effectively learn language-independent knowledge shared across languages due to the differences in the feature distribution between the source and target languages. Secondly, the student network acquires all of its knowledge from the teacher network and ignores the learning of target language-specific knowledge. Undesirably, these limitations would hinder the model's performance in the target language. This paper proposes an unsupervised prototype knowledge distillation network (ProKD) to address these issues. Specifically, ProKD presents a contrastive learning-based prototype alignment method to achieve class feature alignment by adjusting the distance among prototypes in the source and target languages, boosting the teacher network's capacity to acquire language-independent knowledge. In addition, ProKD introduces a prototypical self-training method to learn the intrinsic structure of the language by retraining the student network on the target data using samples' distance information from prototypes, thereby enhancing the student network's ability to acquire language-specific knowledge. Extensive experiments on three benchmark cross-lingual NER datasets demonstrate the effectiveness of our approach.