Abstract:Epistemic Planning (EP) is an important research area dedicated to reasoning about the knowledge and beliefs of agents in multi-agent cooperative or adversarial settings. The Justified Perspective (JP) model is the state-of-the-art approach to solving EP problems with efficiency and expressiveness. However, all existing EP methods inherit the static environment assumption from classical planning. This limitation hinders the application of EP in fields such as robotics with multi-agent settings, where the environment contains changing variables. In this paper, we propose an extension of the JP model, namely, the Predictive Justified Perspective (PJP) model, to remove this assumption. Instead of assuming that beliefs remain unchanged since the last observation, the PJP model uses all past observations to form predictions about the changing variables. The definition of the prediction function with examples is provided, and it is demonstrated that it can work with arbitrary nesting. We then implemented the PJP model in several well-known domains and compared it with the JP model in the experiments. The results indicated that the PJP model performs exceptionally well across various domains, demonstrating its potential in improving EP applications in robotics.
Abstract:Epistemic planning is the sub-field of AI planning that focuses on changing knowledge and belief. It is important in both multi-agent domains where agents need to have knowledge/belief regarding the environment, but also the beliefs of other agents, including nested beliefs. When modeling knowledge in multi-agent settings, many models face an exponential growth challenge in terms of nested depth. A contemporary method, known as Planning with Perspectives (PWP), addresses these challenges through the use of perspectives and set operations for knowledge. The JP model defines that an agent's belief is justified if and only if the agent has seen evidence that this belief was true in the past and has not seen evidence to suggest that this has changed. The current paper extends the JP model to handle \emph{group belief}, including distributed belief and common belief. We call this the Group Justified Perspective (GJP) model. Using experimental problems crafted by adapting well-known benchmarks to a group setting, we show the efficiency and expressiveness of our GJP model at handling planning problems that cannot be handled by other epistemic planning tools.
Abstract:Epistemic planning --- planning with knowledge and belief --- is essential in many multi-agent and human-agent interaction domains. Most state-of-the-art epistemic planners solve this problem by compiling to propositional classical planning, for example, generating all possible knowledge atoms, or compiling epistemic formula to normal forms. However, these methods become computationally infeasible as problems grow. In this paper, we decompose epistemic planning by delegating reasoning about epistemic formula to an external solver. We do this by modelling the problem using \emph{functional STRIPS}, which is more expressive than standard STRIPS and supports the use of external, black-box functions within action models. Exploiting recent work that demonstrates the relationship between what an agent `sees' and what it knows, we allow modellers to provide new implementations of externals functions. These define what agents see in their environment, allowing new epistemic logics to be defined without changing the planner. As a result, it increases the capability and flexibility of the epistemic model itself, and avoids the exponential pre-compilation step. We ran evaluations on well-known epistemic planning benchmarks to compare with an existing state-of-the-art planner, and on new scenarios based on different external functions. The results show that our planner scales significantly better than the state-of-the-art planner against which we compared, and can express problems more succinctly.