Abstract:Controllable image generation has always been one of the core demands in image generation, aiming to create images that are both creative and logical while satisfying additional specified conditions. In the post-AIGC era, controllable generation relies on diffusion models and is accomplished by maintaining certain components or introducing inference interferences. This paper addresses key challenges in controllable generation: 1. mismatched object attributes during generation and poor prompt-following effects; 2. inadequate completion of controllable layouts. We propose a train-free method based on attention loss backward, cleverly controlling the cross attention map. By utilizing external conditions such as prompts that can reasonably map onto the attention map, we can control image generation without any training or fine-tuning. This method addresses issues like attribute mismatch and poor prompt-following while introducing explicit layout constraints for controllable image generation. Our approach has achieved excellent practical applications in production, and we hope it can serve as an inspiring technical report in this field.
Abstract:E-commerce image generation has always been one of the core demands in the e-commerce field. The goal is to restore the missing background that matches the main product given. In the post-AIGC era, diffusion models are primarily used to generate product images, achieving impressive results. This paper systematically analyzes and addresses a core pain point in diffusion model generation: overcompletion, which refers to the difficulty in maintaining product features. We propose two solutions: 1. Using an instance mask fine-tuned inpainting model to mitigate this phenomenon; 2. Adopting a train-free mask guidance approach, which incorporates refined product masks as constraints when combining ControlNet and UNet to generate the main product, thereby avoiding overcompletion of the product. Our method has achieved promising results in practical applications and we hope it can serve as an inspiring technical report in this field.
Abstract:Generating style-consistent images is a common task in the e-commerce field, and current methods are largely based on diffusion models, which have achieved excellent results. This paper introduces the concept of the QKV (query/key/value) level, referring to modifications in the attention maps (self-attention and cross-attention) when integrating UNet with image conditions. Without disrupting the product's main composition in e-commerce images, we aim to use a train-free method guided by pre-set conditions. This involves using shared KV to enhance similarity in cross-attention and generating mask guidance from the attention map to cleverly direct the generation of style-consistent images. Our method has shown promising results in practical applications.
Abstract:Document tamper detection has always been an important aspect of tamper detection. Before the advent of deep learning, document tamper detection was difficult. We have made some explorations in the field of text tamper detection based on deep learning. Our Ps tamper detection method includes three steps: feature assistance, audit point positioning, and tamper recognition. It involves hierarchical filtering and graded output (tampered/suspected tampered/untampered). By combining artificial tamper data features, we simulate and augment data samples in various scenarios (cropping with noise addition/replacement, single character/space replacement, smearing/splicing, brightness/contrast adjustment, etc.). The auxiliary features include exif/binary stream keyword retrieval/noise, which are used for branch detection based on the results. Audit point positioning uses detection frameworks and controls thresholds for high and low density detection. Tamper recognition employs a dual-path dual-stream recognition network, with RGB and ELA stream feature extraction. After dimensionality reduction through self-correlation percentile pooling, the fused output is processed through vlad, yielding an accuracy of 0.804, recall of 0.659, and precision of 0.913.
Abstract:In the industrial e-commerce landscape, creative designs such as banners and posters are ubiquitous. Extracting structured semantic information from creative e-commerce design materials (manuscripts crafted by designers) to obtain design semantics represents a core challenge in the realm of intelligent design. In this paper, we propose a comprehensive automated framework for intelligently parsing creative materials. This framework comprises material recognition, preprocess, smartname, and label layers. The material recognition layer consolidates various detection and recognition interfaces, covering business aspects including detection of auxiliary areas within creative materials and layer-level detection, alongside label identification. Algorithmically, it encompasses a variety of coarse-to-fine methods such as Cascade RCNN, GFL, and other models. The preprocess layer involves filtering creative layers and grading creative materials. The smartname layer achieves intelligent naming for creative materials, while the label layer covers multi-level tagging for creative materials, enabling tagging at different hierarchical levels. Intelligent parsing constitutes a complete parsing framework that significantly aids downstream processes such as intelligent creation, creative optimization, and material library construction. Within the practical business applications at Suning, it markedly enhances the exposure, circulation, and click-through rates of creative materials, expediting the closed-loop production of creative materials and yielding substantial benefits.
Abstract:Deep neural networks have faced many problems in hyperspectral image classification, including the ineffective utilization of spectral-spatial joint information and the problems of gradient vanishing and overfitting that arise with increasing depth. In order to accelerate the deployment of models on edge devices with strict latency requirements and limited computing power, this paper proposes a learnable group convolution network (LGCNet) based on an improved 3D-DenseNet model and a lightweight model design. The LGCNet module improves the shortcomings of group convolution by introducing a dynamic learning method for the input channels and convolution kernel grouping, enabling flexible grouping structures and generating better representation ability. Through the overall loss and gradient of the backpropagation network, the 3D group convolution is dynamically determined and updated in an end-to-end manner. The learnable number of channels and corresponding grouping can capture different complementary visual features of input images, allowing the CNN to learn richer feature representations. When extracting high-dimensional and redundant hyperspectral data, the 3D convolution kernels also contain a large amount of redundant information. The LGC module allows the 3D-DenseNet to choose channel information with more semantic features, and is very efficient, making it suitable for embedding in any deep neural network for acceleration and efficiency improvements. LGC enables the 3D-CNN to achieve sufficient feature extraction while also meeting speed and computing requirements. Furthermore, LGCNet has achieved progress in inference speed and accuracy, and outperforms mainstream hyperspectral image classification methods on the Indian Pines, Pavia University, and KSC datasets.
Abstract:Deep neural networks face many problems in the field of hyperspectral image classification, lack of effective utilization of spatial spectral information, gradient disappearance and overfitting as the model depth increases. In order to accelerate the deployment of the model on edge devices with strict latency requirements and limited computing power, we introduce a lightweight model based on the improved 3D-Densenet model and designs DGCNet. It improves the disadvantage of group convolution. Referring to the idea of dynamic network, dynamic group convolution(DGC) is designed on 3d convolution kernel. DGC introduces small feature selectors for each grouping to dynamically decide which part of the input channel to connect based on the activations of all input channels. Multiple groups can capture different and complementary visual and semantic features of input images, allowing convolution neural network(CNN) to learn rich features. 3D convolution extracts high-dimensional and redundant hyperspectral data, and there is also a lot of redundant information between convolution kernels. DGC module allows 3D-Densenet to select channel information with richer semantic features and discard inactive regions. The 3D-CNN passing through the DGC module can be regarded as a pruned network. DGC not only allows 3D-CNN to complete sufficient feature extraction, but also takes into account the requirements of speed and calculation amount. The inference speed and accuracy have been improved, with outstanding performance on the IN, Pavia and KSC datasets, ahead of the mainstream hyperspectral image classification methods.
Abstract:Hyperspectral imagery is rich in spatial and spectral information. Using 3D-CNN can simultaneously acquire features of spatial and spectral dimensions to facilitate classification of features, but hyperspectral image information spectral dimensional information redundancy. The use of continuous 3D-CNN will result in a high amount of parameters, and the computational power requirements of the device are high, and the training takes too long. This letter designed the Faster selective kernel mechanism network (FSKNet), FSKNet can balance this problem. It designs 3D-CNN and 2D-CNN conversion modules, using 3D-CNN to complete feature extraction while reducing the dimensionality of spatial and spectrum. However, such a model is not lightweight enough. In the converted 2D-CNN, a selective kernel mechanism is proposed, which allows each neuron to adjust the receptive field size based on the two-way input information scale. Under the Selective kernel mechanism, it mainly includes two components, se module and variable convolution. Se acquires channel dimensional attention and variable convolution to obtain spatial dimension deformation information of ground objects. The model is more accurate, faster, and less computationally intensive. FSKNet achieves high accuracy on the IN, UP, Salinas, and Botswana data sets with very small parameters.