Deep neural networks face several challenges in hyperspectral image classification, including insufficient utilization of joint spatial-spectral information, gradient vanishing with increasing depth, and overfitting. To enhance feature extraction efficiency while skipping redundant information, this paper proposes a dynamic attention convolution design based on an improved 3D-DenseNet model. The design employs multiple parallel convolutional kernels instead of a single kernel and assigns dynamic attention weights to these parallel convolutions. This dynamic attention mechanism achieves adaptive feature response based on spatial characteristics in the spatial dimension of hyperspectral images, focusing more on key spatial structures. In the spectral dimension, it enables dynamic discrimination of different bands, alleviating information redundancy and computational complexity caused by high spectral dimensionality. The DAC module enhances model representation capability by attention-based aggregation of multiple convolutional kernels without increasing network depth or width. The proposed method demonstrates superior performance in both inference speed and accuracy, outperforming mainstream hyperspectral image classification methods on the IN, UP, and KSC datasets.