Abstract:We propose EditID, a training-free approach based on the DiT architecture, which achieves highly editable customized IDs for text to image generation. Existing text-to-image models for customized IDs typically focus more on ID consistency while neglecting editability. It is challenging to alter facial orientation, character attributes, and other features through prompts. EditID addresses this by deconstructing the text-to-image model for customized IDs into an image generation branch and a character feature branch. The character feature branch is further decoupled into three modules: feature extraction, feature fusion, and feature integration. By introducing a combination of mapping features and shift features, along with controlling the intensity of ID feature integration, EditID achieves semantic compression of local features across network depths, forming an editable feature space. This enables the successful generation of high-quality images with editable IDs while maintaining ID consistency, achieving excellent results in the IBench evaluation, which is an editability evaluation framework for the field of customized ID text-to-image generation that quantitatively demonstrates the superior performance of EditID. EditID is the first text-to-image solution to propose customizable ID editability on the DiT architecture, meeting the demands of long prompts and high quality image generation.