Deep neural networks face numerous challenges in hyperspectral image classification, including high-dimensional data, sparse ground object distributions, and spectral redundancy, which often lead to classification overfitting and limited generalization capability. To better adapt to ground object distributions while expanding receptive fields without introducing excessive parameters and skipping redundant information, this paper proposes WCNet, an improved 3D-DenseNet model integrated with wavelet transforms. We introduce wavelet transforms to effectively extend convolutional receptive fields and guide CNNs to better respond to low frequencies through cascading, termed wavelet convolution. Each convolution focuses on different frequency bands of the input signal with gradually increasing effective ranges. This process enables greater emphasis on low-frequency components while adding only a small number of trainable parameters. This dynamic approach allows the model to flexibly focus on critical spatial structures when processing different regions, rather than relying on fixed receptive fields of single static kernels. The Wavelet Conv module enhances model representation capability by expanding receptive fields through 3D wavelet transforms without increasing network depth or width. Experimental results demonstrate superior performance on the IN, UP, and KSC datasets, outperforming mainstream hyperspectral image classification methods.