Abstract:Automated high throughput plant phenotyping involves leveraging sensors, such as RGB, thermal and hyperspectral cameras (among others), to make large scale and rapid measurements of the physical properties of plants for the purpose of better understanding the difference between crops and facilitating rapid plant breeding programs. One of the most basic phenotyping tasks is to determine the cultivar, or species, in a particular sensor product. This simple phenotype can be used to detect errors in planting and to learn the most differentiating features between cultivars. It is also a challenging visual recognition task, as a large number of highly related crops are grown simultaneously, leading to a classification problem with low inter-class variance. In this paper, we introduce the Sorghum-100 dataset, a large dataset of RGB imagery of sorghum captured by a state-of-the-art gantry system, a multi-resolution network architecture that learns both global and fine-grained features on the crops, and a new global pooling strategy called Dynamic Outlier Pooling which outperforms standard global pooling strategies on this task.
Abstract:Hotel recognition is an important task for human trafficking investigations since victims are often photographed in hotel rooms. Identifying these hotels is vital to trafficking investigations since they can help track down current and future victims who might be taken to the same places. Hotel recognition is a challenging fine grained visual classification task as there can be little similarity between different rooms within the same hotel, and high similarity between rooms from different hotels (especially if they are from the same chain). Hotel recognition to combat human trafficking poses additional challenges as investigative images are often low quality, contain uncommon camera angles and are highly occluded. Here, we present the 2021 Hotel-ID dataset to help raise awareness for this problem and generate novel approaches. The dataset consists of hotel room images that have been crowd-sourced and uploaded through the TraffickCam mobile application. The quality of these images is similar to investigative images and hence models trained on these images have good chances of accurately narrowing down on the correct hotel.