Abstract:Machine learning algorithms are increasingly being applied to fault detection and diagnosis (FDD) in chemical processes. However, existing data-driven FDD platforms often lack interpretability for process operators and struggle to identify root causes of previously unseen faults. This paper presents FaultExplainer, an interactive tool designed to improve fault detection, diagnosis, and explanation in the Tennessee Eastman Process (TEP). FaultExplainer integrates real-time sensor data visualization, Principal Component Analysis (PCA)-based fault detection, and identification of top contributing variables within an interactive user interface powered by large language models (LLMs). We evaluate the LLMs' reasoning capabilities in two scenarios: one where historical root causes are provided, and one where they are not to mimic the challenge of previously unseen faults. Experimental results using GPT-4o and o1-preview models demonstrate the system's strengths in generating plausible and actionable explanations, while also highlighting its limitations, including reliance on PCA-selected features and occasional hallucinations.
Abstract:Surrogate modeling is used to replace computationally expensive simulations. Neural networks have been widely applied as surrogate models that enable efficient evaluations over complex physical systems. Despite this, neural networks are data-driven models and devoid of any physics. The incorporation of physics into neural networks can improve generalization and data efficiency. The physics-informed neural network (PINN) is an approach to leverage known physical constraints present in the data, but it cannot strictly satisfy them in the predictions. This work proposes a novel physics-informed neural network, KKT-hPINN, which rigorously guarantees hard linear equality constraints through projection layers derived from KKT conditions. Numerical experiments on Aspen models of a continuous stirred-tank reactor (CSTR) unit, an extractive distillation subsystem, and a chemical plant demonstrate that this model can further enhance the prediction accuracy.