Abstract:The International Semantic Web Research School (ISWS) is a week-long intensive program designed to immerse participants in the field. This document reports a collaborative effort performed by ten teams of students, each guided by a senior researcher as their mentor, attending ISWS 2023. Each team provided a different perspective to the topic of creative AI, substantiated by a set of research questions as the main subject of their investigation. The 2023 edition of ISWS focuses on the intersection of Semantic Web technologies and Creative AI. ISWS 2023 explored various intersections between Semantic Web technologies and creative AI. A key area of focus was the potential of LLMs as support tools for knowledge engineering. Participants also delved into the multifaceted applications of LLMs, including legal aspects of creative content production, humans in the loop, decentralised approaches to multimodal generative AI models, nanopublications and AI for personal scientific knowledge graphs, commonsense knowledge in automatic story and narrative completion, generative AI for art critique, prompt engineering, automatic music composition, commonsense prototyping and conceptual blending, and elicitation of tacit knowledge. As Large Language Models and semantic technologies continue to evolve, new exciting prospects are emerging: a future where the boundaries between creative expression and factual knowledge become increasingly permeable and porous, leading to a world of knowledge that is both informative and inspiring.
Abstract:In this work we propose a new approach for semantic web matching to improve the performance of Web Service replacement. Because in automatic systems we should ensure the self-healing, self-configuration, self-optimization and self-management, all services should be always available and if one of them crashes, it should be replaced with the most similar one. Candidate services are advertised in Universal Description, Discovery and Integration (UDDI) all in Web Ontology Language (OWL). By the help of bipartite graph, we did the matching between the crashed service and a Candidate one. Then we chose the best service, which had the maximum rate of matching. In fact we compare two services` functionalities and capabilities to see how much they match. We found that the best way for matching two web services, is comparing the functionalities of them.
Abstract:Since using environments that are made according to the service oriented architecture, we have more effective and dynamic applications. Semantic matchmaking process is finding valuable service candidates for substitution. It is a very important aspect of using semantic Web Services. Our proposed matchmaker algorithm performs semantic matching of Web Services on the basis of input and output descriptions of semantic Web Services matching. This technique takes advantages from a graph structure and flow networks. Our novel approach is assigning matchmaking scores to semantics of the inputs and outputs parameters and their types. It makes a flow network in which the weights of the edges are these scores, using FordFulkerson algorithm, we find matching rate of two web services. So, all services should be described in the same Ontology Web Language. Among these candidates, best one is chosen for substitution in the case of an execution failure. Our approach uses the algorithm that has the least running time among all others that can be used for bipartite matching. The importance of problem is that in real systems, many fundamental problems will occur by late answering. So system`s service should always be on and if one of them crashes, it would be replaced fast. Semantic web matchmaker eases this process.
Abstract:In this work, we show how to discover a semantic web service among a repository of web services. A new approach for web service discovery based on calculating the functions similarity. We define the Web service functions with Ontology Web Language (OWL). We wrote some rules for comparing two web services` parameters. Our algorithm compares the parameters of two web services` inputs/outputs by making a bipartite graph. We compute the similarity rate by using the Ford-Fulkerson algorithm. The higher the similarity, the less are the differences between their functions. At last, our algorithm chooses the service which has the highest similarity. As a consequence, our method is useful when we need to find a web service suitable to replace an existing one that has failed. Especially in autonomic systems, this situation is very common and important since we need to ensure the availability of the application which is based on the failed web service. We use Universal Description, Discovery and Integration (UDDI) compliant web service registry.