Abstract:Contacting customer service via chat is a common practice. Because employing customer service agents is expensive, many companies are turning to NLP that assists human agents by auto-generating responses that can be used directly or with modifications. Large Language Models (LLMs) are a natural fit for this use case; however, their efficacy must be balanced with the cost of training and serving them. This paper assesses the practical cost and impact of LLMs for the enterprise as a function of the usefulness of the responses that they generate. We present a cost framework for evaluating an NLP model's utility for this use case and apply it to a single brand as a case study in the context of an existing agent assistance product. We compare three strategies for specializing an LLM - prompt engineering, fine-tuning, and knowledge distillation - using feedback from the brand's customer service agents. We find that the usability of a model's responses can make up for a large difference in inference cost for our case study brand, and we extrapolate our findings to the broader enterprise space.
Abstract:Annotated datasets are commonly used in the training and evaluation of tasks involving natural language and vision (image description generation, action recognition and visual question answering). However, many of the existing datasets reflect problems that emerge in the process of data selection and annotation. Here we point out some of the difficulties and problems one confronts when creating and validating annotated vision and language datasets.