Abstract:Phase shifting profilometry (PSP) is favored in high-precision 3D scanning due to its high accuracy, robustness, and pixel-wise property. However, a fundamental assumption of PSP that the object should remain static is violated in dynamic measurement, making PSP susceptible to object moving, resulting in ripple-like errors in the point clouds. We propose a pixel-wise and frame-wise loopable binomial self-compensation (BSC) algorithm to effectively and flexibly eliminate motion error in the four-step PSP. Our mathematical model demonstrates that by summing successive motion-affected phase frames weighted by binomial coefficients, motion error exponentially diminishes as the binomial order increases, accomplishing automatic error compensation through the motion-affected phase sequence, without the assistance of any intermediate variable. Extensive experiments show that our BSC outperforms the existing methods in reducing motion error, while achieving a depth map frame rate equal to the camera's acquisition rate (90 fps), enabling high-accuracy 3D reconstruction with a quasi-single-shot frame rate.
Abstract:On 3D imaging, light field cameras typically are of single shot, and however, they heavily suffer from low spatial resolution and depth accuracy. In this paper, by employing an optical projector to project a group of single high-frequency phase-shifted sinusoid patterns, we propose a phase guided light field algorithm to significantly improve both the spatial and depth resolutions for off-the-shelf light field cameras. First, for correcting the axial aberrations caused by the main lens of our light field camera, we propose a deformed cone model to calibrate our structured light field system. Second, over wrapped phases computed from patterned images, we propose a stereo matching algorithm, i.e. phase guided sum of absolute difference, to robustly obtain the correspondence for each pair of neighbored two lenslets. Finally, by introducing a virtual camera according to the basic geometrical optics of light field imaging, we propose a reorganization strategy to reconstruct 3D point clouds with spatial-depth high resolution. Experimental results show that, compared with the state-of-the-art active light field methods, the proposed reconstructs 3D point clouds with a spatial resolution of 1280$\times$720 with factors 10$\times$ increased, while maintaining the same high depth resolution and needing merely a single group of high-frequency patterns.