Abstract:Current black-box backdoor attacks in convolutional neural networks formulate attack objective(s) as single-objective optimization problems in single domain. Designing triggers in single domain harms semantics and trigger robustness as well as introduces visual and spectral anomaly. This work proposes a multi-objective black-box backdoor attack in dual domains via evolutionary algorithm (LADDER), the first instance of achieving multiple attack objectives simultaneously by optimizing triggers without requiring prior knowledge about victim model. In particular, we formulate LADDER as a multi-objective optimization problem (MOP) and solve it via multi-objective evolutionary algorithm (MOEA). MOEA maintains a population of triggers with trade-offs among attack objectives and uses non-dominated sort to drive triggers toward optimal solutions. We further apply preference-based selection to MOEA to exclude impractical triggers. We state that LADDER investigates a new dual-domain perspective for trigger stealthiness by minimizing the anomaly between clean and poisoned samples in the spectral domain. Lastly, the robustness against preprocessing operations is achieved by pushing triggers to low-frequency regions. Extensive experiments comprehensively showcase that LADDER achieves attack effectiveness of at least 99%, attack robustness with 90.23% (50.09% higher than state-of-the-art attacks on average), superior natural stealthiness (1.12x to 196.74x improvement) and excellent spectral stealthiness (8.45x enhancement) as compared to current stealthy attacks by the average $l_2$-norm across 5 public datasets.
Abstract:Is it possible to patch software bugs in P4 programs without human involvement? We show that this is partially possible in many cases due to advances in software testing and the structure of P4 programs. Our insight is that runtime verification can detect bugs, even those that are not detected at compile-time, with machine learning-guided fuzzing. This enables a more automated and real-time localization of bugs in P4 programs using software testing techniques like Tarantula. Once the bug in a P4 program is localized, the faulty code can be patched due to the programmable nature of P4. In addition, platform-dependent bugs can be detected. From P4_14 to P4_16 (latest version), our observation is that as the programmable blocks increase, the patchability of P4 programs increases accordingly. To this end, we design, develop, and evaluate P6 that (a) detects, (b) localizes, and (c) patches bugs in P4 programs with minimal human interaction. P6 tests P4 switch non-intrusively, i.e., requires no modification to the P4 program for detecting and localizing bugs. We used a P6 prototype to detect and patch seven existing bugs in eight publicly available P4 application programs deployed on two different switch platforms: behavioral model (bmv2) and Tofino. Our evaluation shows that P6 significantly outperforms bug detection baselines while generating fewer packets and patches bugs in P4 programs such as switch.p4 without triggering any regressions.