Abstract:Photo restoration technology enables preserving visual memories in photographs. However, physical prints are vulnerable to various forms of deterioration, ranging from physical damage to loss of image quality, etc. While restoration by human experts can improve the quality of outcomes, it often comes at a high price in terms of cost and time for restoration. In this work, we present the AI-based photo restoration framework composed of multiple stages, where each stage is tailored to enhance and restore specific types of photo damage, accelerating and automating the photo restoration process. By integrating these techniques into a unified architecture, our framework aims to offer a one-stop solution for restoring old and deteriorated photographs. Furthermore, we present a novel old photo restoration dataset because we lack a publicly available dataset for our evaluation.
Abstract:The fabrication of visual misinformation on the web and social media has increased exponentially with the advent of foundational text-to-image diffusion models. Namely, Stable Diffusion inpainters allow the synthesis of maliciously inpainted images of personal and private figures, and copyrighted contents, also known as deepfakes. To combat such generations, a disruption framework, namely Photoguard, has been proposed, where it adds adversarial noise to the context image to disrupt their inpainting synthesis. While their framework suggested a diffusion-friendly approach, the disruption is not sufficiently strong and it requires a significant amount of GPU and time to immunize the context image. In our work, we re-examine both the minimal and favorable conditions for a successful inpainting disruption, proposing DDD, a "Digression guided Diffusion Disruption" framework. First, we identify the most adversarially vulnerable diffusion timestep range with respect to the hidden space. Within this scope of noised manifold, we pose the problem as a semantic digression optimization. We maximize the distance between the inpainting instance's hidden states and a semantic-aware hidden state centroid, calibrated both by Monte Carlo sampling of hidden states and a discretely projected optimization in the token space. Effectively, our approach achieves stronger disruption and a higher success rate than Photoguard while lowering the GPU memory requirement, and speeding the optimization up to three times faster.