Abstract:Traffic prediction plays an essential role in intelligent transportation system. Accurate traffic prediction can assist route planing, guide vehicle dispatching, and mitigate traffic congestion. This problem is challenging due to the complicated and dynamic spatio-temporal dependencies between different regions in the road network. Recently, a significant amount of research efforts have been devoted to this area, greatly advancing traffic prediction abilities. The purpose of this paper is to provide a comprehensive survey for traffic prediction. Specifically, we first summarize the existing traffic prediction methods, and give a taxonomy of them. Second, we list the common applications of traffic prediction and the state-of-the-art in these applications. Third, we collect and organize widely used public datasets in the existing literature. Furthermore, we give an evaluation by conducting extensive experiments to compare the performance of methods related to traffic demand and speed prediction respectively on two datasets. Finally, we discuss potential future directions.