Abstract:Though English sentences are typically inflexible vis-\`a-vis word order, constituents often show far more variability in ordering. One prominent theory presents the notion that constituent ordering is directly correlated with constituent weight: a measure of the constituent's length or complexity. Such theories are interesting in the context of natural language processing (NLP), because while recent advances in NLP have led to significant gains in the performance of large language models (LLMs), much remains unclear about how these models process language, and how this compares to human language processing. In particular, the question remains whether LLMs display the same patterns with constituent movement, and may provide insights into existing theories on when and how the shift occurs in human language. We compare a variety of LLMs with diverse properties to evaluate broad LLM performance on four types of constituent movement: heavy NP shift, particle movement, dative alternation, and multiple PPs. Despite performing unexpectedly around particle movement, LLMs generally align with human preferences around constituent ordering.
Abstract:Sentences containing multiple semantic operators with overlapping scope often create ambiguities in interpretation, known as scope ambiguities. These ambiguities offer rich insights into the interaction between semantic structure and world knowledge in language processing. Despite this, there has been little research into how modern large language models treat them. In this paper, we investigate how different versions of certain autoregressive language models -- GPT-2, GPT-3/3.5, Llama 2 and GPT-4 -- treat scope ambiguous sentences, and compare this with human judgments. We introduce novel datasets that contain a joint total of almost 1,000 unique scope-ambiguous sentences, containing interactions between a range of semantic operators, and annotated for human judgments. Using these datasets, we find evidence that several models (i) are sensitive to the meaning ambiguity in these sentences, in a way that patterns well with human judgments, and (ii) can successfully identify human-preferred readings at a high level of accuracy (over 90% in some cases).