Abstract:This paper presents the Digital Typhoon Dataset V2, a new version of the longest typhoon satellite image dataset for 40+ years aimed at benchmarking machine learning models for long-term spatio-temporal data. The new addition in Dataset V2 is tropical cyclone data from the southern hemisphere, in addition to the northern hemisphere data in Dataset V1. Having data from two hemispheres allows us to ask new research questions about regional differences across basins and hemispheres. We also discuss new developments in representations and tasks of the dataset. We first introduce a self-supervised learning framework for representation learning. Combined with the LSTM model, we discuss performance on intensity forecasting and extra-tropical transition forecasting tasks. We then propose new tasks, such as the typhoon center estimation task. We show that an object detection-based model performs better for stronger typhoons. Finally, we study how machine learning models can generalize across basins and hemispheres, by training the model on the northern hemisphere data and testing it on the southern hemisphere data. The dataset is publicly available at \url{http://agora.ex.nii.ac.jp/digital-typhoon/dataset/} and \url{https://github.com/kitamoto-lab/digital-typhoon/}.
Abstract:In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segmentation using bounding polygons. Polytrack detects objects by producing heatmaps of their center keypoint. For each of them, a rough segmentation is done by computing a bounding polygon over each instance instead of the traditional bounding box. Tracking is done by taking two consecutive frames as input and computing a center offset for each object detected in the first frame to predict its location in the second frame. A Kalman filter is also applied to reduce the number of ID switches. Since our target application is automated driving systems, we apply our method on urban environment videos. We trained and evaluated PolyTrack on the MOTS and KITTIMOTS datasets. Results show that tracking polygons can be a good alternative to bounding box and mask tracking. The code of PolyTrack is available at https://github.com/gafaua/PolyTrack.