Abstract:Sponsored search in E-commerce platforms such as Amazon, Taobao and Tmall provides sellers an effective way to reach potential buyers with most relevant purpose. In this paper, we study the auction mechanism optimization problem in sponsored search on Alibaba's mobile E-commerce platform. Besides generating revenue, we are supposed to maintain an efficient marketplace with plenty of quality users, guarantee a reasonable return on investment (ROI) for advertisers, and meanwhile, facilitate a pleasant shopping experience for the users. These requirements essentially pose a constrained optimization problem. Directly optimizing over auction parameters yields a discontinuous, non-convex problem that denies effective solutions. One of our major contribution is a practical convex optimization formulation of the original problem. We devise a novel re-parametrization of auction mechanism with discrete sets of representative instances. To construct the optimization problem, we build an auction simulation system which estimates the resulted business indicators of the selected parameters by replaying the auctions recorded from real online requests. We summarized the experiments on real search traffics to analyze the effects of fidelity of auction simulation, the efficacy under various constraint targets and the influence of regularization. The experiment results show that with proper entropy regularization, we are able to maximize revenue while constraining other business indicators within given ranges.
Abstract:A method based on one class support vector machine (OCSVM) is proposed for class incremental learning. Several OCSVM models divide the input space into several parts. Then, the 1VS1 classifiers are constructed for the confuse part by using the support vectors. During the class incremental learning process, the OCSVM of the new class is trained at first. Then the support vectors of the old classes and the support vectors of the new class are reused to train 1VS1 classifiers for the confuse part. In order to bring more information to the certain support vectors, the support vectors are at the boundary of the distribution of samples as much as possible when the OCSVM is built. Compared with the traditional methods, the proposed method retains the original model and thus reduces memory consumption and training time cost. Various experiments on different datasets also verify the efficiency of the proposed method.
Abstract:With the development of deep learning, the performance of hyperspectral image (HSI) classification has been greatly improved in recent years. The shortage of training samples has become a bottleneck for further improvement of performance. In this paper, we propose a novel convolutional neural network framework for the characteristics of hyperspectral image data, called HSI-CNN. Firstly, the spectral-spatial feature is extracted from a target pixel and its neighbors. Then, a number of one-dimensional feature maps, obtained by convolution operation on spectral-spatial features, are stacked into a two-dimensional matrix. Finally, the two-dimensional matrix considered as an image is fed into standard CNN. This is why we call it HSI-CNN. In addition, we also implements two depth network classification models, called HSI-CNN+XGBoost and HSI-CapsNet, in order to compare the performance of our framework. Experiments show that the performance of hyperspectral image classification is improved efficiently with HSI-CNN framework. We evaluate the model's performance using four popular HSI datasets, which are the Kennedy Space Center (KSC), Indian Pines (IP), Pavia University scene (PU) and Salinas scene (SA). As far as we concerned, HSI-CNN has got the state-of-art accuracy among all methods we have known on these datasets of 99.28%, 99.09%, 99.42%, 98.95% separately.