Abstract:Determining the location of a tropical cyclone's (TC) surface circulation center -- "center-fixing" -- is a critical first step in the TC-forecasting process, affecting current and future estimates of track, intensity, and structure. Despite a recent increase in the number of automated center-fixing methods, only one such method (ARCHER-2) is operational, and its best performance is achieved when using microwave or scatterometer data, which are not available at every forecast cycle. We develop a deep-learning algorithm called GeoCenter; it relies only on geostationary IR satellite imagery, which is available for all TC basins at high frequency (10-15 min) and low latency (< 10 min) during both day and night. GeoCenter ingests an animation (time series) of IR images, including 10 channels at lag times up to 3 hours. The animation is centered at a "first guess" location, offset from the true TC-center location by 48 km on average and sometimes > 100 km; GeoCenter is tasked with correcting this offset. On an independent testing dataset, GeoCenter achieves a mean/median/RMS (root mean square) error of 26.9/23.3/32.0 km for all systems, 25.7/22.3/30.5 km for tropical systems, and 15.7/13.6/18.6 km for category-2--5 hurricanes. These values are similar to ARCHER-2 errors when microwave or scatterometer data are available, and better than ARCHER-2 errors when only IR data are available. GeoCenter also performs skillful uncertainty quantification (UQ), producing a well calibrated ensemble of 200 TC-center locations. Furthermore, all predictors used by GeoCenter are available in real time, which would make GeoCenter easy to implement operationally every 10-15 min.
Abstract:In just the past few years multiple data-driven Artificial Intelligence Weather Prediction (AIWP) models have been developed, with new versions appearing almost monthly. Given this rapid development, the applicability of these models to operational forecasting has yet to be adequately explored and documented. To assess their utility for operational tropical cyclone (TC) forecasting, the NHC verification procedure is used to evaluate seven-day track and intensity predictions for northern hemisphere TCs from May-November 2023. Four open-source AIWP models are considered (FourCastNetv1, FourCastNetv2-small, GraphCast-operational and Pangu-Weather). The AIWP track forecast errors and detection rates are comparable to those from the best-performing operational forecast models. However, the AIWP intensity forecast errors are larger than those of even the simplest intensity forecasts based on climatology and persistence. The AIWP models almost always reduce the TC intensity, especially within the first 24 h of the forecast, resulting in a substantial low bias. The contribution of the AIWP models to the NHC model consensus was also evaluated. The consensus track errors are reduced by up to 11% at the longer time periods. The five-day NHC official track forecasts have improved by about 2% per year since 2001, so this represents more than a five-year gain in accuracy. Despite substantial negative intensity biases, the AIWP models have a neutral impact on the intensity consensus. These results show that the current formulation of the AIWP models have promise for operational TC track forecasts, but improved bias corrections or model reformulations will be needed for accurate intensity forecasts.