Abstract:Vision-based person, hand or face detection approaches have achieved incredible success in recent years with the development of deep convolutional neural network (CNN). In this paper, we take the inherent correlation between the body and body parts into account and propose a new framework to boost up the detection performance of the multi-level objects. In particular, we adopt a region-based object detection structure with two carefully designed detectors to separately pay attention to the human body and body parts in a coarse-to-fine manner, which we call Detector-in-Detector network (DID-Net). The first detector is designed to detect human body, hand, and face. The second detector, based on the body detection results of the first detector, mainly focus on the detection of small hand and face inside each body. The framework is trained in an end-to-end way by optimizing a multi-task loss. Due to the lack of human body, face and hand detection dataset, we have collected and labeled a new large dataset named Human-Parts with 14,962 images and 106,879 annotations. Experiments show that our method can achieve excellent performance on Human-Parts.
Abstract:SSD (Single Shot Multibox Detector) is one of the best object detection algorithms with both high accuracy and fast speed. However, SSD's feature pyramid detection method makes it hard to fuse the features from different scales. In this paper, we proposed FSSD (Feature Fusion Single Shot Multibox Detector), an enhanced SSD with a novel and lightweight feature fusion module which can improve the performance significantly over SSD with just a little speed drop. In the feature fusion module, features from different layers with different scales are concatenated together, followed by some down-sampling blocks to generate new feature pyramid, which will be fed to multibox detectors to predict the final detection results. On the Pascal VOC 2007 test, our network can achieve 82.7 mAP (mean average precision) at the speed of 65.8 FPS (frame per second) with the input size 300$\times$300 using a single Nvidia 1080Ti GPU. In addition, our result on COCO is also better than the conventional SSD with a large margin. Our FSSD outperforms a lot of state-of-the-art object detection algorithms in both aspects of accuracy and speed. Code is available at https://github.com/lzx1413/CAFFE_SSD/tree/fssd.