Abstract:Mobile robot fleets are currently used in different scenarios such as medical environments or logistics. The management of these systems provides different challenges that vary from the control of the movement of each robot to the allocation of tasks to be performed. Task Allocation (TA) problem is a key topic for the proper management of mobile robot fleets to ensure the minimization of energy consumption and quantity of necessary robots. Solutions on this aspect are essential to reach economic and environmental sustainability of robot fleets, mainly in industry applications such as warehouse logistics. The minimization of energy consumption introduces TA problem as an optimization issue which has been treated in recent studies. This work focuses on the analysis of current trends in solving TA of mobile robot fleets. Main TA optimization algorithms are presented, including novel methods based on Artificial Intelligence (AI). Additionally, this work showcases most important results extracted from simulations, including frameworks utilized for the development of the simulations. Finally, some conclusions are obtained from the analysis to target on gaps that must be treated in the future.
Abstract:Berry picking has long-standing traditions in Finland, yet it is challenging and can potentially be dangerous. The integration of drones equipped with advanced imaging techniques represents a transformative leap forward, optimising harvests and promising sustainable practices. We propose WildBe, the first image dataset of wild berries captured in peatlands and under the canopy of Finnish forests using drones. Unlike previous and related datasets, WildBe includes new varieties of berries, such as bilberries, cloudberries, lingonberries, and crowberries, captured under severe light variations and in cluttered environments. WildBe features 3,516 images, including a total of 18,468 annotated bounding boxes. We carry out a comprehensive analysis of WildBe using six popular object detectors, assessing their effectiveness in berry detection across different forest regions and camera types. We will release WildBe publicly.