SIERRA
Abstract:We introduce a differentiable clustering method based on minimum-weight spanning forests, a variant of spanning trees with several connected components. Our method relies on stochastic perturbations of solutions of linear programs, for smoothing and efficient gradient computations. This allows us to include clustering in end-to-end trainable pipelines. We show that our method performs well even in difficult settings, such as datasets with high noise and challenging geometries. We also formulate an ad hoc loss to efficiently learn from partial clustering data using this operation. We demonstrate its performance on several real world datasets for supervised and semi-supervised tasks.