Abstract:Modern language models are capable of contextualizing words based on their surrounding context. However, this capability is often compromised due to semantic change that leads to words being used in new, unexpected contexts not encountered during pre-training. In this paper, we model \textit{semantic change} by studying the effect of unexpected contexts introduced by \textit{lexical replacements}. We propose a \textit{replacement schema} where a target word is substituted with lexical replacements of varying relatedness, thus simulating different kinds of semantic change. Furthermore, we leverage the replacement schema as a basis for a novel \textit{interpretable} model for semantic change. We are also the first to evaluate the use of LLaMa for semantic change detection.
Abstract:Contextualized embeddings are the preferred tool for modeling Lexical Semantic Change (LSC). Current evaluations typically focus on a specific task known as Graded Change Detection (GCD). However, performance comparison across work are often misleading due to their reliance on diverse settings. In this paper, we evaluate state-of-the-art models and approaches for GCD under equal conditions. We further break the LSC problem into Word-in-Context (WiC) and Word Sense Induction (WSI) tasks, and compare models across these different levels. Our evaluation is performed across different languages on eight available benchmarks for LSC, and shows that (i) APD outperforms other approaches for GCD; (ii) XL-LEXEME outperforms other contextualized models for WiC, WSI, and GCD, while being comparable to GPT-4; (iii) there is a clear need for improving the modeling of word meanings, as well as focus on how, when, and why these meanings change, rather than solely focusing on the extent of semantic change.
Abstract:In the universe of Natural Language Processing, Transformer-based language models like BERT and (Chat)GPT have emerged as lexical superheroes with great power to solve open research problems. In this paper, we specifically focus on the temporal problem of semantic change, and evaluate their ability to solve two diachronic extensions of the Word-in-Context (WiC) task: TempoWiC and HistoWiC. In particular, we investigate the potential of a novel, off-the-shelf technology like ChatGPT (and GPT) 3.5 compared to BERT, which represents a family of models that currently stand as the state-of-the-art for modeling semantic change. Our experiments represent the first attempt to assess the use of (Chat)GPT for studying semantic change. Our results indicate that ChatGPT performs significantly worse than the foundational GPT version. Furthermore, our results demonstrate that (Chat)GPT achieves slightly lower performance than BERT in detecting long-term changes but performs significantly worse in detecting short-term changes.
Abstract:Modern data mining applications require to perform incremental clustering over dynamic datasets by tracing temporal changes over the resulting clusters. In this paper, we propose A-Posteriori affinity Propagation (APP), an incremental extension of Affinity Propagation (AP) based on cluster consolidation and cluster stratification to achieve faithfulness and forgetfulness. APP enforces incremental clustering where i) new arriving objects are dynamically consolidated into previous clusters without the need to re-execute clustering over the entire dataset of objects, and ii) a faithful sequence of clustering results is produced and maintained over time, while allowing to forget obsolete clusters with decremental learning functionalities. Four popular labeled datasets are used to test the performance of APP with respect to benchmark clustering performances obtained by conventional AP and Incremental Affinity Propagation based on Nearest neighbor Assignment (IAPNA) algorithms. Experimental results show that APP achieves comparable clustering performance while enforcing scalability at the same time.
Abstract:Semantic Shift Detection (SSD) is the task of identifying, interpreting, and assessing the possible change over time in the meanings of a target word. Traditionally, SSD has been addressed by linguists and social scientists through manual and time-consuming activities. In the recent years, computational approaches based on Natural Language Processing and word embeddings gained increasing attention to automate SSD as much as possible. In particular, over the past three years, significant advancements have been made almost exclusively based on word contextualised embedding models, which can handle the multiple usages/meanings of the words and better capture the related semantic shifts. In this paper, we survey the approaches based on contextualised embeddings for SSD (i.e., CSSDetection) and we propose a classification framework characterised by meaning representation, time-awareness, and learning modality dimensions. The framework is exploited i) to review the measures for shift assessment, ii) to compare the approaches on performance, and iii) to discuss the current issues in terms of scalability, interpretability, and robustness. Open challenges and future research directions about CSSDetection are finally outlined.