Abstract:We present Darts, a Python machine learning library for time series, with a focus on forecasting. Darts offers a variety of models, from classics such as ARIMA to state-of-the-art deep neural networks. The emphasis of the library is on offering modern machine learning functionalities, such as supporting multidimensional series, meta-learning on multiple series, training on large datasets, incorporating external data, ensembling models, and providing a rich support for probabilistic forecasting. At the same time, great care goes into the API design to make it user-friendly and easy to use. For instance, all models can be used using fit()/predict(), similar to scikit-learn.
Abstract:Designing a convolution for a spherical neural network requires a delicate tradeoff between efficiency and rotation equivariance. DeepSphere, a method based on a graph representation of the sampled sphere, strikes a controllable balance between these two desiderata. This contribution is twofold. First, we study both theoretically and empirically how equivariance is affected by the underlying graph with respect to the number of vertices and neighbors. Second, we evaluate DeepSphere on relevant problems. Experiments show state-of-the-art performance and demonstrates the efficiency and flexibility of this formulation. Perhaps surprisingly, comparison with previous work suggests that anisotropic filters might be an unnecessary price to pay. Our code is available at https://github.com/deepsphere