Abstract:Novelty modeling and detection is a core topic in Natural Language Processing (NLP), central to numerous tasks such as recommender systems and automatic summarization. It involves identifying pieces of text that deviate in some way from previously known information. However, novelty is also a crucial determinant of the unique perception of relevance and quality of an experience, as it rests upon each individual's understanding of the world. Social factors, particularly cultural background, profoundly influence perceptions of novelty and innovation. Cultural novelty arises from differences in salience and novelty as shaped by the distance between distinct communities. While cultural diversity has garnered increasing attention in artificial intelligence (AI), the lack of robust metrics for quantifying cultural novelty hinders a deeper understanding of these divergences. This gap limits quantifying and understanding cultural differences within computational frameworks. To address this, we propose an interdisciplinary framework that integrates knowledge from sociology and management. Central to our approach is GlobalFusion, a novel dataset comprising 500 dishes and approximately 100,000 cooking recipes capturing cultural adaptation from over 150 countries. By introducing a set of Jensen-Shannon Divergence metrics for novelty, we leverage this dataset to analyze textual divergences when recipes from one community are modified by another with a different cultural background. The results reveal significant correlations between our cultural novelty metrics and established cultural measures based on linguistic, religious, and geographical distances. Our findings highlight the potential of our framework to advance the understanding and measurement of cultural diversity in AI.
Abstract:Popularity bias in recommender systems can increase cultural overrepresentation by favoring norms from dominant cultures and marginalizing underrepresented groups. This issue is critical for platforms offering cultural products, as they influence consumption patterns and human perceptions. In this work, we address popularity bias by identifying demographic biases within prototype-based matrix factorization methods. Using the country of origin as a proxy for cultural identity, we link this demographic attribute to popularity bias by refining the embedding space learning process. First, we propose filtering out irrelevant prototypes to improve representativity. Second, we introduce a regularization technique to enforce a uniform distribution of prototypes within the embedding space. Across four datasets, our results demonstrate a 27\% reduction in the average rank of long-tail items and a 2\% reduction in the average rank of items from underrepresented countries. Additionally, our model achieves a 2\% improvement in HitRatio@10 compared to the state-of-the-art, highlighting that fairness is enhanced without compromising recommendation quality. Moreover, the distribution of prototypes leads to more inclusive explanations by better aligning items with diverse prototypes.
Abstract:Large Language Models (LLMs) are increasingly integrated into critical decision-making processes, such as loan approvals and visa applications, where inherent biases can lead to discriminatory outcomes. In this paper, we examine the nuanced relationship between demographic attributes and socioeconomic biases in LLMs, a crucial yet understudied area of fairness in LLMs. We introduce a novel dataset of one million English sentences to systematically quantify socioeconomic biases across various demographic groups. Our findings reveal pervasive socioeconomic biases in both established models such as GPT-2 and state-of-the-art models like Llama 2 and Falcon. We demonstrate that these biases are significantly amplified when considering intersectionality, with LLMs exhibiting a remarkable capacity to extract multiple demographic attributes from names and then correlate them with specific socioeconomic biases. This research highlights the urgent necessity for proactive and robust bias mitigation techniques to safeguard against discriminatory outcomes when deploying these powerful models in critical real-world applications.