Abstract:In recent years, object detection has achieved a very large performance improvement, but the detection result of small objects is still not very satisfactory. This work proposes a strategy based on feature fusion and dilated convolution that employs dilated convolution to broaden the receptive field of feature maps at various scales in order to address this issue. On the one hand, it can improve the detection accuracy of larger objects. On the other hand, it provides more contextual information for small objects, which is beneficial to improving the detection accuracy of small objects. The shallow semantic information of small objects is obtained by filtering out the noise in the feature map, and the feature information of more small objects is preserved by using multi-scale fusion feature module and attention mechanism. The fusion of these shallow feature information and deep semantic information can generate richer feature maps for small object detection. Experiments show that this method can have higher accuracy than the traditional YOLOv3 network in the detection of small objects and occluded objects. In addition, we achieve 32.8\% Mean Average Precision on the detection of small objects on MS COCO2017 test set. For 640*640 input, this method has 88.76\% mAP on the PASCAL VOC2012 dataset.
Abstract:Dunhuang murals are a collection of Chinese style and national style, forming a self-contained Chinese-style Buddhist art. It has very high historical and cultural value and research significance. Among them, the lines of Dunhuang murals are highly general and expressive. It reflects the character's distinctive character and complex inner emotions. Therefore, the outline drawing of murals is of great significance to the research of Dunhuang Culture. The contour generation of Dunhuang murals belongs to image edge detection, which is an important branch of computer vision, aims to extract salient contour information in images. Although convolution-based deep learning networks have achieved good results in image edge extraction by exploring the contextual and semantic features of images. However, with the enlargement of the receptive field, some local detail information is lost. This makes it impossible for them to generate reasonable outline drawings of murals. In this paper, we propose a novel edge detector based on self-attention combined with convolution to generate line drawings of Dunhuang murals. Compared with existing edge detection methods, firstly, a new residual self-attention and convolution mixed module (Ramix) is proposed to fuse local and global features in feature maps. Secondly, a novel densely connected backbone extraction network is designed to efficiently propagate rich edge feature information from shallow layers into deep layers. Compared with existing methods, it is shown on different public datasets that our method is able to generate sharper and richer edge maps. In addition, testing on the Dunhuang mural dataset shows that our method can achieve very competitive performance.