Abstract:Semantic segmentation of medical images with deep learning models is rapidly developed. In this study, we benchmarked state-of-the-art deep learning segmentation algorithms on our clinical stereotactic radiosurgery dataset, demonstrating the strengths and weaknesses of these algorithms in a fairly practical scenario. In particular, we compared the model performances with respect to their sampling method, model architecture, and the choice of loss functions, identifying the suitable settings for their applications and shedding light on the possible improvements.
Abstract:Stereotactic radiosurgery (SRS), which delivers high doses of irradiation in a single or few shots to small targets, has been a standard of care for brain metastases. While very effective, SRS currently requires manually intensive delineation of tumors. In this work, we present a deep learning approach for automated detection and segmentation of brain metastases using multimodal imaging and ensemble neural networks. In order to address small and multiple brain metastases, we further propose a volume-aware Dice loss which optimizes model performance using the information of lesion size. This work surpasses current benchmark levels and demonstrates a reliable AI-assisted system for SRS treatment planning for multiple brain metastases.