Abstract:An important task for a recommender system to provide interpretable explanations for the user. This is important for the credibility of the system. Current interpretable recommender systems tend to focus on certain features known to be important to the user and offer their explanations in a structured form. It is well known that user generated reviews and feedback from reviewers have strong leverage over the users' decisions. On the other hand, recent text generation works have been shown to generate text of similar quality to human written text, and we aim to show that generated text can be successfully used to explain recommendations. In this paper, we propose a framework consisting of popular review-oriented generation models aiming to create personalised explanations for recommendations. The interpretations are generated at both character and word levels. We build a dataset containing reviewers' feedback from the Amazon books review dataset. Our cross-domain experiments are designed to bridge from natural language processing to the recommender system domain. Besides language model evaluation methods, we employ DeepCoNN, a novel review-oriented recommender system using a deep neural network, to evaluate the recommendation performance of generated reviews by root mean square error (RMSE). We demonstrate that the synthetic personalised reviews have better recommendation performance than human written reviews. To our knowledge, this presents the first machine-generated natural language explanations for rating prediction.
Abstract:An important task for recommender system is to generate explanations according to a user's preferences. Most of the current methods for explainable recommendations use structured sentences to provide descriptions along with the recommendations they produce. However, those methods have neglected the review-oriented way of writing a text, even though it is known that these reviews have a strong influence over user's decision. In this paper, we propose a method for the automatic generation of natural language explanations, for predicting how a user would write about an item, based on user ratings from different items' features. We design a character-level recurrent neural network (RNN) model, which generates an item's review explanations using long-short term memories (LSTM). The model generates text reviews given a combination of the review and ratings score that express opinions about different factors or aspects of an item. Our network is trained on a sub-sample from the large real-world dataset BeerAdvocate. Our empirical evaluation using natural language processing metrics shows the generated text's quality is close to a real user written review, identifying negation, misspellings, and domain specific vocabulary.