Abstract:Learning-based methods have become increasingly popular for solving vehicle routing problems due to their near-optimal performance and fast inference speed. Among them, the combination of deep reinforcement learning and graph representation allows for the abstraction of node topology structures and features in an encoder-decoder style. Such an approach makes it possible to solve routing problems end-to-end without needing complicated heuristic operators designed by domain experts. Existing research studies have been focusing on novel encoding and decoding structures via various neural network models to enhance the node embedding representation. Despite the sophisticated approaches applied, there is a noticeable lack of consideration for the graph-theoretic properties inherent to routing problems. Moreover, the potential ramifications of inter-nodal interactions on the decision-making efficacy of the models have not been adequately explored. To bridge this gap, we propose an adaptive Graph Attention Sampling with the Edges Fusion framework (GASE),where nodes' embedding is determined through attention calculation from certain highly correlated neighbourhoods and edges, utilizing a filtered adjacency matrix. In detail, the selections of particular neighbours and adjacency edges are led by a multi-head attention mechanism, contributing directly to the message passing and node embedding in graph attention sampling networks. Furthermore, we incorporate an adaptive actor-critic algorithm with policy improvements to expedite the training convergence. We then conduct comprehensive experiments against baseline methods on learning-based VRP tasks from different perspectives. Our proposed model outperforms the existing methods by 2.08\%-6.23\% and shows stronger generalization ability, achieving state-of-the-art performance on randomly generated instances and real-world datasets.
Abstract:The rapid adoption of Internet of Things (IoT) devices in healthcare has introduced new challenges in preserving data privacy, security and patient safety. Traditional approaches need to ensure security and privacy while maintaining computational efficiency, particularly for resource-constrained IoT devices. This paper proposes a novel hybrid approach combining federated learning and blockchain technology to provide a secure and privacy-preserved solution for IoT-enabled healthcare applications. Our approach leverages a public-key cryptosystem that provides semantic security for local model updates, while blockchain technology ensures the integrity of these updates and enforces access control and accountability. The federated learning process enables a secure model aggregation without sharing sensitive patient data. We implement and evaluate our proposed framework using EMNIST datasets, demonstrating its effectiveness in preserving data privacy and security while maintaining computational efficiency. The results suggest that our hybrid approach can significantly enhance the development of secure and privacy-preserved IoT-enabled healthcare applications, offering a promising direction for future research in this field.