Abstract:Unsupervised anomaly detection is a promising technique for identifying unusual patterns in data without the need for labeled training examples. This approach is particularly valuable for early case detection in epidemic management, especially when early-stage data are scarce. This research introduces a novel hybrid method for anomaly detection that combines distance and density measures, enhancing its applicability across various infectious diseases. Our method is especially relevant in pandemic situations, as demonstrated during the COVID-19 crisis, where traditional supervised classification methods fall short due to limited data. The efficacy of our method is evaluated using COVID-19 chest X-ray data, where it significantly outperforms established unsupervised techniques. It achieves an average AUC of 77.43%, surpassing the AUC of Isolation Forest at 73.66% and KNN at 52.93%. These results highlight the potential of our hybrid anomaly detection method to improve early detection capabilities in diverse epidemic scenarios, thereby facilitating more effective and timely responses.
Abstract:Chronic Kidney Disease (CKD) is one of the widespread Chronic diseases with no known ultimo cure and high morbidity. Research demonstrates that progressive Chronic Kidney Disease (CKD) is a heterogeneous disorder that significantly impacts kidney structure and functions, eventually leading to kidney failure. With the progression of time, chronic kidney disease has moved from a life-threatening disease affecting few people to a common disorder of varying severity. The goal of this research is to visualize dominating features, feature scores, and values exhibited for early prognosis and detection of CKD using ensemble learning and explainable AI. For that, an AI-driven predictive analytics approach is proposed to aid clinical practitioners in prescribing lifestyle modifications for individual patients to reduce the rate of progression of this disease. Our dataset is collected on body vitals from individuals with CKD and healthy subjects to develop our proposed AI-driven solution accurately. In this regard, blood and urine test results are provided, and ensemble tree-based machine-learning models are applied to predict unseen cases of CKD. Our research findings are validated after lengthy consultations with nephrologists. Our experiments and interpretation results are compared with existing explainable AI applications in various healthcare domains, including CKD. The comparison shows that our developed AI models, particularly the Random Forest model, have identified more features as significant contributors than XgBoost. Interpretability (I), which measures the ratio of important to masked features, indicates that our XgBoost model achieved a higher score, specifically a Fidelity of 98\%, in this metric and naturally in the FII index compared to competing models.