Abstract:With the rapid growth of IoT devices, ensuring robust network security has become a critical challenge. Traditional intrusion detection systems (IDSs) often face limitations in detecting sophisticated attacks within high-dimensional and complex data environments. This paper presents a novel approach to network anomaly detection using hyperdimensional computing (HDC) techniques, specifically applied to the NSL-KDD dataset. The proposed method leverages the efficiency of HDC in processing large-scale data to identify both known and unknown attack patterns. The model achieved an accuracy of 91.55% on the KDDTrain+ subset, outperforming traditional approaches. These comparative evaluations underscore the model's superior performance, highlighting its potential in advancing anomaly detection for IoT networks and contributing to more secure and intelligent cybersecurity solutions.
Abstract:The rapid expansion of Internet of Things (IoT) networks has introduced new security challenges, necessitating efficient and reliable methods for intrusion detection. In this study, a detection framework based on hyperdimensional computing (HDC) is proposed to identify and classify network intrusions using the NSL-KDD dataset, a standard benchmark for intrusion detection systems. By leveraging the capabilities of HDC, including high-dimensional representation and efficient computation, the proposed approach effectively distinguishes various attack categories such as DoS, probe, R2L, and U2R, while accurately identifying normal traffic patterns. Comprehensive evaluations demonstrate that the proposed method achieves an accuracy of 99.54%, significantly outperforming conventional intrusion detection techniques, making it a promising solution for IoT network security. This work emphasizes the critical role of robust and precise intrusion detection in safeguarding IoT systems against evolving cyber threats.