Abstract:This paper analyses the performance of reconfigurable intelligent surface (RIS)-assisted device-to-device (D2D) communication systems, focusing on addressing co-channel interference, a prevalent issue due to the frequency reuse of sidelink in the underlay in-band D2D communications. In contrast to previous studies that either neglect interference or consider it only at the user, our research investigates a performance analysis in terms of outage probability (OP) for RIS-assisted D2D communication systems considering the presence of interference at both the user and the RIS. More specifically, we introduce a novel integral-form expression for an exact analysis of OP. Additionally, we present a new accurate approximation expression for OP, using the gamma distributions to approximate the fading of both desired and interference links, thereby yielding a closed-form expression. Nevertheless, both derived expressions, i.e., the exact integral-form and the approximate closed-form, contain special functions, such as Meijer's G-function and the parabolic cylinder function, which complicate real-time OP analysis. To circumvent this, we employ a deep neural network (DNN) for real-time OP prediction, trained with data generated by the exact expression. Moreover, we present a tight upper bound that quantifies the impact of interference on achievable diversity order and coding gain. We validate the derived expressions through Monte Carlo simulations. Our analysis reveals that while interference does not affect the system's diversity order, it significantly degrades the performance by reducing the coding gain. The results further demonstrate that increasing the number of RIS's reflecting elements is an effective strategy to mitigate the adverse effects of the interference on the system performance.
Abstract:This paper presents exact formulas for the probability distribution function (PDF) and moment generating function (MGF) of the sum-product of statistically independent but not necessarily identically distributed (i.n.i.d.) Nakagami-$m$ random variables (RVs) in terms of Meijer's G-function. Additionally, exact series representations are also derived for the sum of double-Nakagami RVs, providing useful insights on the trade-off between accuracy and computational cost. Simple asymptotic analytical expressions are provided to gain further insight into the derived formula, and the achievable diversity order is obtained. The suggested statistical properties are proved to be a highly useful tool for modeling parallel cascaded Nakagami-$m$ fading channels. The application of these new results is illustrated by deriving exact expressions and simple tight upper bounds for the outage probability (OP) and average symbol error rate (ASER) of several binary and multilevel modulation signals in intelligent reflecting surfaces (IRSs)-assisted communication systems operating over Nakagami-$m$ fading channels. It is demonstrated that the new asymptotic expression is highly accurate and can be extended to encompass a wider range of scenarios. To validate the theoretical frameworks and formulations, Monte-Carlo simulation results are presented. Additionally, supplementary simulations are provided to compare the derived results with two common types of approximations available in the literature, namely the central limit theorem (CLT) and gamma distribution.
Abstract:This paper concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO) downlink wireless communication network. The main objective of the paper is to maximize the sum-rate of all users by solving the joint optimization problem of the IRS-user association, IRS reflection, and BS beamforming, formulated as a non-convex mixed-integer optimization problem. The variable separation and relaxation are used to transform the problem into three convex sub-problems, which are alternatively solved through the convex optimization (CO) method. The major drawback of the proposed CO-based algorithm is high computational complexity. Thus, we make use of machine learning (ML) to tackle this problem. To this end, first, we convert the optimization problem into a regression problem. Then, we solve it with feed-forward neural networks (FNNs), trained by CO-based generated data. Simulation results show that the proposed ML-based algorithm has a performance equivalent to the CO-based algorithm, but with less computation complexity due to its offline training procedure.